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In this paper, we extend ideas from the economics literature on multiple
output production and efficiency to develop methods for comparing baseball
players which take into account the fact that there are many dimensions
to batting performance. A key part of our approach is the estimation
of an output aggregator based on the performance of the best players in
baseball. An individual player can then be measured relative to the best
and a number between zero and one characterizes his performance as a
fraction of the best. The methods are applied using data from 1995-1999
on all regular players in baseball’s major leagues.



1 Introduction

Academics and sports fans alike are often interested in a statistical comparison of baseball
players. This is hard to do since baseball is fundamentally a multiple output sport. For
instance, some players are power hitters and excel in hitting home runs, others hit more
singles. To directly compare a power hitter like Mark McGwire with someone who hits
for average like Tony Gwynn is fairly meaningless. In the sporting press, there are many
different ways of aggregating performance in different offensive categories into a single num-
ber. Examples of such output aggregators include batting average, on base percentage and
slugging percentage. There are two related problems with such standard ways of combining
different offensive categories into one number. First, they are all imperfect measures of of-
fensive performance. For instance, batting average underweights the contribution of home
runs and all of the output aggregators do not correct for different player circumstances (e.g.
Coors Park is notorious for being a hitter’s park and, accordingly, it is easier for players
on the Colorado Rockies to hit well). Second, the weights in all the output aggregators are
somewhat ad hoc. For instance, slugging average weights home runs precisely four times
as heavily as singles; batting average weights singles and home runs equally; and on base
percentage weights walks and hits equally. All such weighting choices can be criticized.
The purpose of this paper is to use statistical methods to estimate an output aggregator
for offensive performance of baseball players and then compare individual players to this
benchmark.

The statistical methods used in this paper are adapted from the economics literature
and, hence, we adopt some economic terminology. That is, we view baseball players (like
firms in an economic context) as producing outputs given firm characteristics (e.g. a batter
produces the ”output” hits which depends on his situation including what team he plays for,
etc.). In an economics context, you typically see firms operating with different output mixes

just as in baseball you see batters with different mixes of hits (e.g. singles, doubles, home



runs). By looking at the best firms in different regions of output space, the economist can
trace out a production possibility curve which measures the maximum feasible combinations
of outputs which can be produced. In baseball, we can look at the best batters in different
regions of output space and trace out a comparable curve. For instance, Mark McGwire
might heavily influence the production possibility curve in the power dimensions while Tony
Gwynn might have influence in batting average dimensions. Once we have estimated this
production possibility curve, we can compare individuals to it. Since the curve reflects best
practice, an average player will lie inside the curve. As discussed below, a number between
zero and one can be calculated which reflects how far the player is from the nearest point on
the curve. Following the economics literature, we refer to this number as efficiency. So, for
instance, we might find a certain player has an efficiency of 0.8. This number has a simple,
intuitive interpretation: the player under consideration is only 80% as productive as the
best players with a comparable output mix. In other words, our methodology allows for a
comparison of any player with similar players and provides an easily interpretable, single
number summary of a player’s performance. Furthermore, our methodology incorporates
all of the outputs that a batter produces and corrects for the player’s situation (e.g. playing
in a particularly good or bad hitter’s park).

The literature which uses statistical methods to analyze baseball data is voluminous.
However, to the best of our knowledge, there has been no previous academic study of the
multiple-output character of baseball and the use of efficiency analysis to measure a player’s
performance. Many of the more influential papers use data on the performance of the team
as a whole (e.g. Barry and Hartigan, 1993, Kaigh, 1995 or Ferrall and Smith, 1999) or focus
on a particular measure or two of player performance (e.g. Albright, 1993, Berry, Reese
and Larkey, 1999, Lackritz, 1996 and Schall and Smith, 2000) or discuss issues relating
to salary determination (e.g. Chapman and Southwick, 1991, Depken, 2000, Hoaglin and
Velleman, 1995, Kahn, 1993, Scully, 1974 and Watnik, 1998).

We derive a Markov Chain Monte Carlo (MCMC) algorithm for carrying out Bayesian



estimation of player efficiencies. We use this algorithm to carry out statistical inference
relating to the performance of all batters who played regularly during the years 1995-1999.
Our empirical findings are sensible. For instance, our list of the top 15 ranked players
contains the names of many of the top players in the game.

The remainder of the paper is organized as follows. The next section discusses the data.
The third section develops the statistical model, while the fourth section presents empirical

results. The fifth section concludes.

2 The Data

The data used in this study was obtained from Sean Lahman’s Baseball Archive (www.baseballl.com)
which contains a myriad of statistics on everyone who has ever played major league baseball.
In order to focus the study, we consider only performance indicators relating to batting.
Similar models could be developed to investigate pitching, fielding or base running perfor-
mance. Accordingly, we omit all pitchers from our sample and also omit players with fewer
than 200 at bats in a given year. Having fewer than 200 at bats usually reflects injury
or very irregular play. Furthermore, Berry, Reese and Larkey (1999) provides convincing
evidence that a player’s ability can change substantially over the course of his career. To
avoid explicitly modelling such aging affects, we use data from 1995-1999 and assume that a
player’s ability is roughly constant over such a short time span. Our preferred specification
(see below) is a logged one and, hence, does not accommodate zero values for any of the
outputs. Accordingly, we add doubles and triples together into one output (since triples
are quite rare) and delete all player years with zero values for any of the outputs. This
removes only 19 observations (i.e. player-years).

The resulting data set contains 1,492 observations on 535 different players. As outputs

Wwe use:

e y;= number of singles per at bat,



e o= number of doubles plus triples per at bat,
e y3= number of home runs per at bat,

e y,= number of walks (including intentional walks and hit-by-pitch’s) per at bat.

The omission of runs scored and runs batted in (RBIs) from our list of outputs warrants
explanation. These are not direct measures of batting performance and contain minimal
information that is not already contained in ¥, ...,y,. Runs and RBIs reflect the hitting
ability of a player either to get on base or drive in other players who are already on
base. This is already measured by the other outputs. Runs and RBIs also depend on the
performance of other players (which is already measured in their batting statistics) and
base running ability (which is not the focus of the present study). Furthermore, RBIs
depend crucially on a player’s location in the batting order and we do not have data on
this. Accordingly, we do not include runs scored or RBIs as separate output measures.

Two players with the same level of ability can have different outputs for several reasons.

We attempt to control for this through including the following explanatory variables:
e ;= an intercept,
e 15— x5= dummies for the years 1996, 1997, 1998 and 1999 (1995 is the omitted year),
e 3= dummy for league (=1 for American League),

e 17— 1x35= dummies for 29 of the 30 teams which existed for all or part of the 1995-1999

period (Baltimore Orioles are the omitted team).

The league dummy is included to reflect differences across the American and National
Leagues. A primary difference is the use of the designated hitter (i.e. a batter designated
to hit instead of the pitcher) in the American League. However, differences also might

occur due to umpires in the different leagues having different styles (e.g. different strike
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zones). The team dummies are included to reflect both physical effects (i.e. baseball parks
have different characteristics making some easier to hit in than others) and proxy for the
effect the other players on a team have on an individual’s hitting performance (e.g. being a
good hitter on a weak team will mean that opposing pitchers can ”pitch around” you and
not offer you any good pitches to hit, knowing that weaker hitters will follow you in the
batting order).

Another possibly relevant issue is the treatment of outs. There are several ways a player
can get out (e.g. strikeouts, ground outs, fly outs). Strikeouts are typically considered the
worst way of getting out in that runners cannot advance on a strikeout exception in very
unusual situations (although with strikeouts, the chances of a double play are small, in
contrast to ground outs or even fly outs). The data set used in this paper has data on
strikeouts, but not on other ways of getting out. In an early version of this paper, we
included strikeouts per at bat as an undesirable output in our model (see Fernandez, Koop
and Steel, 2001a,b, for discussions of multiple output modelling with undesirable outputs).
Results for this model excessively penalized players with many strikeouts and did not seem
reasonable (e.g. Mark McGwire was ranked as a very average player due to his high number
of strikeouts). Perhaps, if data were available, including strikeouts, ground outs and fly outs
as three separate undesirable outputs would be sensible. But in the absence of complete

data on these, we decided to omit strikeouts altogether.

3 The Model

To illustrate the basic ideas underlying our model, consider the case where baseball players
produce two outputs, power and batting average. The outputs of six hypothetical baseball
players are plotted in Figure 1 and marked as (1),..,(6). If we look first at these points, it
can be seen that there appears to be a trade-off between power and average. Players (1),

(2) and (3) have relatively low values for power but having relatively high batting averages.



Players (4), (5) and (6) are power hitters. What our statistical methods do is to estimate
a curve of the best power/average combinations that are observed in the data. This curve
is plotted on Figure 1 and can be seen to be heavily influenced by players (1), (2), (5) and
(6).

Direct comparisons of, say, player (1) to player (6) would be considered by many to
be relatively meaningless. After all, there is no one better than either of these players at
doing what they specialize in. However, player (4) is a power hitter and can be meaningfully
compared to power hitters (5) or (6). Similarly player (3) can be meaningfully compared to
players (1) or (2). Our statistical methods use the ratio of distances O(4)/OA as a measure
of the performance of player (4) and O(3)/OB as a measure of the performance of player
(3). Note that players are always being measured relative to a curve largely defined by
the best comparable players (e.g. power hitters are compared to power hitters). Adopting
terminology from the economics literature we call these measures of player performance
efficiencies, although more accurately (but awkwardly) they could be called performance
as a proportion of the comparable best players’.

Figure 1 is a hypothetical illustration where hitters are either power or average hitters.
Of course, in reality there will be a continuum of hitters and many more outputs. Neverthe-
less, the same intuition holds. The performance of the best players for a given combination
of outputs defines the production possibility curve at this combination of outputs. Other

players are compared to curves largely defined by players with a similar mix of outputs.
i Insert Figure 1 here™**

An alternative way of intuitively motivating our approach is in terms of functions re-

lating a k—vector of explanatory variables, x, to a p—vector of outputs, y:



The positive function #(y) should be interpreted in the same manner as the curve in Figure
1. That is, it maps out the output combinations achieved by the best players (for a given
value for h(z)). The function h(x) corrects for different player characteristics. It can be
interpreted as the maximum amount of output which can be produced by a player with
characteristics given by x where output is measured by the output aggregator 6(y).

Since 6(y) is, by definition, the set of output combinations achieved by the best players
with characteristics z, a typical player will produce less than the value implied by 6(y).
Accordingly, if we add a subscript ¢ to indicate a particular player, and let 7; be a measure

of this shortfall with 0 < 7; < 1 we can write:

9(%) = h(%’)Tz’ (2)
o 9(%’)
T = h(z) (3)

7; is the measure of player i’s efficiency used in this paper. As emphasized previously, it can
be interpreted in terms of distances on graphs like Figure 1 or as a measure of performance
relative to the best players with a similar output mix (i.e. player i is producing 7;% of the
output of the best players with similar characteristics and a similar output mix).

The previous paragraphs have sketched out the basic ideas of our approach in an in-
tuitive manner. In the remainder of this section, we formalize these ideas by assuming
specific forms for 6(.) and h(.), explicitly incorporating the longitudinal nature of the data,
adding measurement error and making additional assumptions necessary to achieve a valid
sampling model.

The model used extends that developed in Fernandez, Koop and Steel (2000). Let y; ;)
be the amount of the j** output produced by, and T(ity) the [ explanatory variable of,

player ¢ at time ¢ where ¢ = 1,.., N and t = 1,..,7T;. Note that we have an unbalanced



panel where, for some players, data is missing for some values of ¢. In order to model the

production possibility curve, we define an output aggregator given by:

p 1/aq
O = (Z aj y(qi,t,j)> , (4)
j=1

which depends on parameters a; € (0,1) for all j = 1,...,p, with ¢ _;a; = 1 and
a = (ag, .., ozp)'. This is closely related to the commonly-used constant elasticity of scale
function. As described in many places (e.g. Fernandez, Koop and Steel, 2000) this is a
flexible form for the output aggregator which allows for a wide variety of shapes. The
parameter, g, relates to the trade-off between the outputs and values of ¢ > 1 imply a
negative trade-off (i.e. increasing one output implies reducing at least one of the other
outputs). We expect to find ¢ > 1, but do not impose this in the prior. The a; parameters
ensure invariance to the scaling of the j* output (e.g. measuring y; in terms of singles per
100 at bats instead of singles per at bat will only alter a;; and not affect the measurement of
efficiency). We can interpret 6, +) as an aggregate output, which collapses the p-dimensional
output vector into one dimension.

Defining the N'T'—vector containing the logs of the aggregate outputs as:

log 0 = (log 6(11y,10g 0(19), - .., 10g 011y, - - ., 10g O n 1)) (5)

where NT = YN, T;, we model logf as depending on an NT x k matrix of explanatory

variables,
Z(1,1,1) T(1,1,2) - T(1,Lk)
Z(1,2,1
X = (1,2,1)
L(N,In,1) LT(NTIn,2) - T(NTyk)

and an N-vector of individual effects, z = (21, 22, ..., zy)’, and add on a term to reflect
measurement error:

logf = X3 — Dz +e. (6)
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The (NT x N)-matrix D is selected to match the individual effect with the appropriate
individual. That is,

Ly 0 0
o 0 L1y
D= 0 0
0 0 LTy

where g is an S-dimensional vector of ones.

Some motivation for the specification in (6) is called for. One way of interpreting it is
as a standard panel data stochastic frontier model (see, e.g., Schmidt and Sickles, 1984) in
terms of the aggregate output, . Adding the term z; is crucial to our analysis as it can
be interpreted as a measure of the ability of player i in producing the aggregate output.
The assumption that a player’s ability is roughly constant over the short time span of the
data implies that z; is constant over time. Given that we are interested in measuring player
performance relative to a benchmark established by the best players, z; must have a one-
sided distribution to ensure z; > 0. That is, (y) = h(z) defines the frontier established
by the best players and, hence, all players lie on or within this frontier and thus z; > 0
(if we ignore measurement error). Given the log specification in (6), it follows that player

efficiency (see equation 3 or Figure 1) is given by:

T; = exp (—z;) (7)

where 0 < 7; < 1. Fernandez, Koop and Steel (2000) provides additional graphical moti-
vation for the output aggregator given in equation (4) and the way in which an equation
analogous to (6) provides a sensible efficiency measure.

In order to keep the number of parameters reasonably small relative to the number of
observations, it is standard to make a distributional assumption for z. Such an assumption

can either be treated as a hierarchical prior or as part of the likelihood function. We



assume:

p(2| Ao, A1) HfG (2], Ao, A1) (8)

i=1
where fi(zi|a,b) denotes the p.d.f. of a Gamma distribution with mean a/b and variance
a/b?. We note that previous work with stochastic frontier models typically uses more
restrictive distributions such as the exponential or the half Normal. However, we justify
the use of the Gamma on the grounds that, with the large amount of data we have, it is
appropriate to have a more flexible form to let the data determine the form of the efficiency
distribution. Furthermore, histograms of the data indicate that the Gamma is probably
more suitable than the exponential or half-Normal. For instance, histograms of — In(y( ,;))
should give us a rough idea of the shape of the distribution of z;. These typically have an
interior mode and are skewed to the right. Such properties can easily be accommodated
using the Gamma distribution, but not the exponential, half Normal or even the more
general truncated Normal.

The Normally distributed error term, €, reflects the usual measurement error and model
imperfections. If we let ff(¢la, A) denote the R-variate Normal p.d.f. with mean a and

covariance matrix A, we assume:

p(elS) = ¥ (el0,h ), (9)

where h is the error precision and Iy is the identity matrix.

It is important to stress that equation (6), plus the assumptions in (8) and (9), are
not enough to fully describe the likelihood function. For each player in each year, we have
data on p outputs. A single equation such as (6) is not adequate to define a likelihood
function for p > 1 endogenous variables. If o and g were known, then (6) would provide
a valid likelihood function for log(f) but not the individual outputs which go into this
aggregate output. In order to complete specification of a likelihood function, we need to

say something about the individual outputs. As in Fernandez, Koop and Steel (2000), we
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do so by defining the weighted output shares:

gy,

(4,t,5) .

Niti) = —=p a3 J =L, (10)
’ 10 ?J(z t,)

which can be interpreted as the contribution of an individual output to the aggregate.

Since Y20_1 Nty = 1, (10) provides the extra (p — 1) dimensions necessary to provide a

valid probability density for the p outputs. Since 0 < 7,5 < 1 it is logical to group these

shares as ;1) = (1Mt,1)s - - - Ntp)) s and assume independent sampling from
P(npls) = 5 (als), (11)
where s = (s1,...,5,)" and f%'(-|s) is the p.d.f. of a Dirichlet distribution with parameter

vector s. Equations (10) and (11) are not only added simply to complete the likelihood
function. As we shall see below, n has a simple intuitive interpretation relating to there
being different types of hitters (e.g. those who hit for power, for average, etc.).

Define Y to be the NT x p matrix containing data on all outputs for all players in all
years, with elements ordered in the same manner as log# in (5). Equations (6), (9), (10)

and (11) imply the following likelihood function for Y

p(Y’ﬁwZ? h,Oé,q,S) = J]VVT (loge‘Xﬁ - Dz7h71[NT) (12)
71772,75,]
£ e
II| /5 (aols) H —

it
In the present paper, we adopt a Bayesian approach. Accordingly, we interpret (8) as

a hierarchical prior. In addition, we require priors for the parameters (3, Ao, A1, h, @, g, s).
Details on the priors are given in Appendix A. Suffice it to note here that we choose
relatively noninformative priors which allow the data information to be predominant.

In order to carry out posterior inference, we develop a Markov Chain Monte Carlo

(MCMC) algorithm which involves sequentially drawing from p(5|Y, z,X\o, A1, b, @, q, ),
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p(h|Y, 2,8, Ao, M1, o, q, 8), (Y] 2,6, Mo, A1, By q, 8), p(q]Y, 2,0, Ao, A1y by, 8), p(s|Y, 2,8, Ao, A1, by @, q).
P(AY, 2,8, M, h, e, q, 8), p(AN Y, 2,0, Ao, b, @, q, ) and p(2|Y,B3, Ao, A1, h, @, q, s). Details on
the precise forms of these conditional posteriors, methods for drawing from them and a
discussion of MCMC convergence are given in Appendix B. Suffice it to note here that

we combine various techniques from Fernandez, Koop and Steel (2000), Koop, Steel and

Osiewalski (1995) and Tsionas (2000).

4 Empirical Results

4.1 Posterior Inference on the Parameters of the Model

Table 1 contains posterior medians and the upper and lower bounds of a 95% highest pos-
terior density interval (HPDI) for most of the parameters. Since the parameters themselves
are of little interest, we do not discuss this table in any detail. The posterior for g indicates
only a slight departure from the linear trade-off case where ¢ = 1 (i.e. the case where the
production possibility curve in a figure analogous to Figure 1 is a straight line). The a;s
indicate that more weight is put on singles, doubles and triples than home runs or walks
on a per at bat basis. Note that the relatively low weight on, say, home runs, does not
necessarily penalize home run hitters in terms of their efficiency. For instance, in Figure 1,
players (5) and (6) are very efficient despite have relatively low batting averages.

The posterior for )y provides strong evidence for the importance of our use of the
Gamma distribution (see equation 8) for the distribution of the z;s. That is, clear departures
from the commonly-used exponential distribution are found. We will discuss issues relating
to the parameters in s in a sub-section involving the 7 ;s below.

Table 1: Posterior Medians and 95% HPDIs for Parameters
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Median Lower 95% Upper 95%
q 1.266 1.063 1.534
a1 0.276 0.234 0.316
as  0.433 0.412 0.458
oz 0.181 0.138 0.228
oy  0.110 0.096 0.120
Ao 1.653 1.440 2.815
A1 13.589 11.423 19.457
h  138.52 125.44 152.33
s1 20.142  13.646 28.009
sy 8.551 6.038 12.399
s3  1.403 1.021 1.893
sa 3.830 2.668 5.286

For reasons of brevity, we do not present posterior results for each of the 35 elements
of . Only 6 of these are significantly different from zero (in the sense that the 95% HPDI
does not include zero). However, a further 14 elements are possibly important in that they
have 70% HPDIs which exclude zero. Furthermore, extensive experimentation suggests that
posterior inference on the efficiencies is not greatly affected by the inclusion or exclusion of
the explanatory variables which appear insignificant. Accordingly, the results presented in
this section simply include all of the explanatory variables. The only strongly negatively
significant variables is the intercept, while the 1997 and 1998 year dummies and team
dummy for Detroit have 70% HPDIs which are entirely negative. Hence, we have some
slight evidence that 1997 and 1998 were pitchers’ years. The strongly positively significant
variables all reflect teams. Since Baltimore is the omitted team dummy, these explanatory
variables indicate Boston, Cleveland, New York Yankees, Colorado and Houston either play
in hitters’ parks or have hitters’ teams relative to Baltimore (either of which would be an
advantage for players on these teams). This list includes some notorious hitters’ parks and,
unsurprisingly, the Colorado dummy has the highest point estimate. Many of the other
team dummies have 70% HPDIs which are entirely positive. The league dummy is not

significant, but if all the team dummies are omitted it becomes significant.
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In the preceding sections, we have argued that our model is a flexible and reasonable
one. However, some readers may be interested in formal measures of model fit. Even for
the single output case, there is no commonly recognized measure of fit used with this class

of models. That is, the total error or deviation from the frontier in this model is given by:

Uity = E(it) — i

which does not have mean zero and, hence, a measure such as R? would be hard to interpret.
Instead we measure the relative contributions of the two components to the total squared
error. In particular, note that

o o+ A
E (uf; olh do, M) = b7 + A—%O
can be broken into a term reflecting measurement error (™) and one reflecting efficiency.
The expected value of the share due to measurement error is 0.22. This implies that 78% of
the squared deviation from the frontier is being picked up by the (time-invariant) efficiency

component. We interpret this as saying that the model is fitting well in that the role of

measurement error is quite small.

4.2 What do Point Estimates of Player Efficiencies Tell Us?

Space constraints prevent us from presenting efficiency results for each of the 535 players.
Accordingly, Figure 2 contains a histogram of the posterior mean efficiency for all players.
Table 2 presents posterior means and standard deviations for the 15 players with the
highest posterior mean efficiencies. In addition, Table 3 presents results for players with
posterior means of efficiencies which are at the minimum, first quartile, median and third
quartile of the efficiency distribution, respectively. In order to provide a comparison with
other common measures of batting performance the tables also include batting average and

number of home runs per at bat.
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Figure 2 indicates a skewed efficiency distribution with an interior mode, but one with
relatively low dispersion (i.e. the efficiency estimates run from 0.648 through 0.987 with
most of the players clustered in the interval [0.8,1.0]. This is unsurprising given that a
batter who hits safely one time in four risks demotion to the minor leagues whereas a

batter who hits safely one time in three is close to winning a batting title.
****Insert Figure 2 here***

The results in Table 2 are quite reasonable, with many of the top names in baseball
being listed. It is also reassuring to see that a variety of types of hitters are ranked highly.
The top 15 list contains hitters who are well known as having high on-base percentages
(e.g. Tony Gwynn, Wade Boggs, Chuck Knoblauch) as well as power hitters (e.g. Barry
Bonds, Frank Thomas, Gary Sheffield) as well as those who combine some power with a
high batting average (e.g. Edgar Martinez, Mike Piazza, Bernie Williams). The presence of
explanatory variables means that two identical players on different teams can have different
efficiencies. The fact that Larry Walker (with batting average of 0.344 over the 1995-1999
period) played in Colorado accounts for his absence from the top 15 list (although with
an efficiency of 0.967 his is not far off the list). The fact that Jose Offerman, Jason
Kendall and Wade Boggs played at least some of their years on relatively poor hitting
teams benefitted them in terms of efficiency performance.

A notable absence from this list is the name of Mark McGwire (a record setting home
run hitter). With a posterior mean efficiency of 0.960, he is not far off of our list. However,
his exceptionally fine home run performance in 1998 and 1999 was partly counterbalanced
by a weaker performance in earlier years due to injury. Sammy Sosa’s weaker (relative to
1998 and 1999) years in 1995-1997 and lower batting average implies he is ranked even
lower. However, the relatively low ranking of these two famous home run hitters brings up
an interesting point. Our methodology involves comparing individual players with the best

where the "best” can be established in any year. With regards to home runs, the standard
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set in 1998 and 1999 was so exceptional that, relative to it, the 1995-1997 McGwires and
Sosas do not look that efficient. Our approach implicitly averages a player’s performance
over 1995-1999 and, hence, McGwire and Sosa average exceptional scores in 1998 and 1999
with lower efficiencies in 1995-1997 and, thus, rank lower than their exceptional 1998 and
1999’s would suggest.

Table 2: Posterior Results for the Top 15 Players

Efficiency Efficiency Batting Home Runs

Rank Name (Mean) (St. Dev.) Average per at bat
1 E. Martinez 0.987 0.010 0.334 0.052
2 M. Grace 0.984 0.012 0.318 0.025
3 T. Gwynn 0.982 0.013 0.352 0.022
4 G. Sheffield 0.981 0.014 0.298 0.064
5) F. Thomas 0.979 0.015 0.314 0.061
6 J. Kendall 0.977 0.016 0.312 0.018
7 J. Offerman 0.975 0.017 0.300 0.010
8 M. Piazza 0.975 0.017 0.338 0.069
9 R. Alomar 0.974 0.017 0.312 0.033
10 J. Olerud 0.974 0.017 0.304 0.035
11 B. Bonds 0.972 0.019 0.294 0.076
12 B. Larkin 0.972 0.019 0.305 0.034
13 W. Boggs 0.971 0.019 0.303 0.010
14  C. Knoblauch 0.971 0.019 0.303 0.023
15 B. Williams 0.971 0.019 0.324 0.044

The players in Table 3 are less well-known than those in Table 2 (e.g. J. R. Phillips
played only in 1995 and even then only in 92 games). Nevertheless, based on an examination
of batting average it does seem as though our model is providing with a reasonable ranking
of efficiency. The fact that Charlie O’'Brien (who is known for his defensive skills) is ranked
so poorly emphasizes the fact that the present model takes into account only batting
performance.

Table 3: Posterior Results for Players Ranked at Quartiles
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Efficiency Efficiency Batting Home Runs

Rank Name (Mean) (St. Dev.) Average per at bat
Minimum J. R. Phillips 0.648 0.057 0.195 0.039
1st quartile C. O’Brien 0.851 0.049 0.230 0.031
Median J. Bates 0.891 0.056 0.267 0.025
Third quartile  D. Cedeno 0.928 0.039 0.281 0.009

4.3 Are Point Estimates Accurate Enough to Meaningfully Rank
Players?

The results in the previous sub-section are all based on point estimates of efficiencies. One
advantage of the Bayesian approach over non-Bayesian alternatives is that it is simple to
derive posterior standard deviations for player-specific efficiencies to see if rankings based
on point estimates really are statistically significant (Fernandez, Koop and Steel, 2000b,
discusses this issue in detail). An examination of Tables 2 and 3 indicate that posterior
standard deviations can be fairly large, indicating that caution must be taken in comparing
individual players. For instance, the estimated efficiencies of all our top 15 players are
within one standard deviation of one another. A naive interpretation of this finding is that
our top 15 ranking is pretty meaningless. However, correlations between the efficiencies of
different players implies that posterior standard deviations may not tell the full story. In
order to shed additional light on this issue, various posterior probabilities which address
questions like ”what is the probability that player A is more efficient than player B?” can
be calculated. Such probabilities can be obtained by simply calculating the proportion of
MCMC replications for which player A is more efficient than player B. Of course, there are
a myriad of possible comparisons which could be made. As a general rule, we find that
it is not easy to distinguish between players which are ranked very close to each other in
terms of point estimates, but it is possible to distinguish between players farther apart in
the ranking. . The following selection of comparisons illustrates these points.

A first finding is that there is a 0.021 probability that Mark McGwire (ranked 34th
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with an estimated efficiency of 0.960) should be on our top 15 list (i.e. in roughly 2%
of the MCMC draws he falls in the top 15 in terms of efficiency). Hence, even though
McGwire’s efficiency estimate is within one standard deviation of the those of the top 15
players, we can reliably say he is less efficient that they are. A justification for his relatively
poor performance is given in the previous subsection. A second finding is that there is a
0.086 probability that Edgard Martinez truly is the most efficient player (i.e. in over 90%
of MCMC replications one of the other players is most efficient). Tables 4 and 5 offer
more systematic comparisons. Table 4 takes the players ranked 1st, 5th, 10th and 15th
and compares them. In particular, the element in the i column and ;™ row in Table 4 is
the probability that player i is more efficient than player j. Table 5 is of the same form,
but takes the 5 quartile players (i.e. minimum, first quartile, median, third quartile and
maximum efficient players).

Table 4: Probability that Player in Column is More Efficient than Player in

Row
E. Martinez F. Thomas J. Olerud B. Williams

E. Martinez

F. Thomas 0.671

J. Olerud 0.705 0.546

B. Williams 0.757 0.600 0.563

Table 5: Probability that Player in Column is More Efficient than Player in
Row
E. Martinez D. Cedeno J. Bates C. O’Brien J. R. Phillips

E. Martinez

D. Cedeno 0.962

J. Bates 0.976 0.724

C. O’Brien 0.997 0.833 0.808

J. R. Phillips 1.000 0.999 0.997 0.993

We find these results to be moderately encouraging. Of course, there is a fair bit of

statistical uncertainty associated with estimating the large number of parameters in the
model. However, Table 5 indicates that our approach can reliably say that players ranked

in different quartiles from one another can be said to be different in their efficiencies. Note
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that the lowest figures in this table are associated with J. Bates, a player with an unusually
high posterior standard deviation. In Table 4, we are comparing players ranked roughly
one percentile apart and it is unsurprising that results are not as strong. Nevertheless,

there is a good chance that our top 15 rankings are at least roughly sensible.

4.4 What do Point Estimates of the 7, ;s Tell us?

Player-specific efficiencies are the focus of the present study. Nevertheless, it is worthwhile
to briefly digress to discuss the 7;; ;s as these are an innovative part of the present model.
Remember that they can be interpreted as being the share of the aggregate output at-
tributed to output j for player i in time t (see equation 10). Figure 3 calculates histograms
of all the 7; ;)s. Based on the modes of these histograms, we can infer that, for a typical
player, the output singles receives roughly 54% of the weight in the aggregate output, dou-
bles and triples receive roughly 28%, home runs roughly 4% and walks roughly 12%. The
weights reflect both the shape of the production possibility curve (i.e. a and ¢, which are
estimated from the data) as well as the actual value of the output in each category (i.e.
Yly s Ya)-

Figure 3 illustrates a relatively high variability across players. For instance, the contri-
bution of singles to aggregate output varies from 0.45 to 0.70. The contribution of doubles
and triples varies from 0.16 to over 0.36, etc. In other words, there are many different types
of players with very differing performance in terms of each of the individual outputs. This
indicates that any ranking of players based on a single output could be very misleading

and emphasizes the value of finding a statistically justifiable way of aggregating outputs.
***Insert Figure 3 here***

The shape of the histograms in Figure 3 are, with one exception, roughly normal. The

exception is home runs, which is skewed and has a few interesting bumps in the right tail.
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The bins furthest to the right are for Mark McGwire and Sammy Sosa in the years 1998
and 1999.

4.5 The Relationship Between Efficiency and Salaries

The chief purpose of the present paper relates to the issue of player performance. The
related issue of how closely player performance relates to salary is an important one. How-
ever, there are so many complications (e.g. the fact that players become free agents only
after a certain number of years) which imply that modelling salaries in baseball is a diffi-
cult task which would lead us far from the main focus of the paper (see, e.g., Scully, 1974,
Depken, 2000, Hoaglin and Velleman, 1995). In addition, the efficiency estimates only
include batting performance and, hence, are an incomplete measure of a player’s worth to
his team. Nevertheless, for the reader interested in some basic information on the rela-
tionship between salary and performance, we have collected data on the salary (including
any bonus) of 478 of our 535 players. The salary data is taken from Sean Lahman’s Base-
ball Archive (www.baseballl.com) but is only available through 1998 and has some missing
players which accounts for the fact that only 478 players were available. Furthermore, given
free agency and the time it takes for a player to develop, it is plausible that the most recent
salary is the best signal of a player’s performance. Accordingly, the salary data is for the
most recent year available (usually 1998, but occasionally for earlier years for players who
retired).

The mean, median, standard deviation, minimum and maximum of the salaries are
$1,654,065, $700,000, $1,981,836, $100,000 and $10,000,000, respectively. The simple cor-
relation between salary and efficiency is only 0.29. Figure 4 contains an XY plot of salary
and efficiency, and the reason for the low correlation between salary and performance is
readily apparent. There are a large number of very efficient players who are paid very
poorly. Most of these are young players yet to test the free agent market. For instance,

Derek Jeter has an efficiency estimate of 0.963 but in 1998 was only paid $750,000. Jason
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Giambi, with efficiency of 0.961, was only paid $315,000 in 1998.

***Insert Figure 4 here***

5 Conclusion

In this paper we have developed statistical methods for comparing the performance of
individual baseball players which explicitly take into account the many outputs players
produce. A key component in our method is an output aggregator which is estimated based
on the performance of the best players in the various output dimensions. Individual players
are then compared to the benchmark set by the best. The result is a number between zero
and one which has a simple, intuitive, interpretation. If a player’s efficiency estimate is
0.75, then we can say he is producing 75% of the output of the best comparable players,
where the output is measured using the output aggregator. Such a number, we argue, has
advantages over traditional measures of batting performance in that it is simple to interpret
and does not require the choice of ad hoc weights to create an aggregate output. Bayesian
methods for statistical inference were developed and used to estimate the efficiencies of 535
players in the years 1995-1999.

Given the great, and increasing, importance of sport in our economic and social life
developing such techniques is of direct interest. However, there is also an indirect sense in
which developing statistical techniques in a sports-related context is of interest. In many
social and biological sciences, cases exist where the researcher is interested in evaluating
the performance of an individual against a standard set by others. In such cases, models
similar to the one used in this paper are potentially of interest. Many researchers find it
easier to conceptualize statistical modelling issues in comfortable surroundings such as that
provided by baseball. Accordingly, a second purpose of this paper is to discuss the issues
involved in multiple output production modelling in what we hope is a familiar context, in

order to popularize them in other fields.

21



6 References

Albright, S.C. (1993), ” A Statistical Analysis of Hitting Streaks in Baseball (with discussion
and rejoinder),” Journal of the American Statistical Association, 88, 1175-1196).

Barry, D. and Hartigan, J.A. (1993), ” Choice Models for Predicting Divisional Winners
in Baseball,” Journal of the American Statistical Association, 88, T66-774.

Berry, S., Reese, C.S. and Larkey, P. (1999), ”Bridging Different Eras in Sport (with
discussion and rejoinder),” Journal of the American Statistical Association, 94, 661-686.

van den Broeck, J., Koop, G., Osiewalski, J. and Steel, M.F.J. (1994), ”Stochastic
Frontier Models: A Bayesian Perspective,” Journal of Econometrics, 61, 273-303.

Chapman, K. (1991), ”Testing the Matching Hypothesis: The Case of Major League
Baseball,” American Economic Review, 81, 1352-1360.

Chib, S. and Greenberg, E. (1995), ” Understanding the Metropolis-Hastings algorithm,”
The American Statistician, 49, 327-335.

Depken II, C.A. (2000), ” Wage Disparity and Team Productivity: Evidence from Major
League Baseball,” Economics Letters, 67, 87-92.

Ferrall, C. and Smith, A. (1999), ”A Sequential Game Model of Sports Championship
Series: Theory and Estimation,” Review of Economics and Statistics, LXXXI, 704-719.

Fernandez, C., Koop, G. and Steel, M.F.J. (2000), ” A Bayesian Analysis of Multiple-
Output Production Functions,” Journal of Econometrics, 98, 47-79.

Fernandez, C., Koop, G. and Steel, M.F.J. (2001a), ”Multiple Output Production with
Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture,” manuscript
available at www.gla.ac.uk/departments/economics/ .

Fernandez, C., Koop, G. and Steel, M.F.J. (2001b), ” Alternative Efficiency Measures for
Multiple Output Production,” manuscript available at www.gla.ac.uk/departments/economics//.

Fernandez, C., Osiewalski, J., and Steel, M.F.J. (1997), “On the Use of Panel Data in
Stochastic Frontier Models With Improper Priors,” Journal of Econometrics, 79, 169-193.

22



Geweke, J. (1992), ” Evaluating the Accuracy of Sampling-Based Approaches to the Cal-
culation of Posterior Moments,” in J.O. Berger, J.M. Bernardo, A.P. Dawid and A.F.M.
Smith (eds.), Proceedings of the Fourth Valencia International Meeting on Bayesian Sta-
tistics, 169-194. Oxford: Oxford University Press.

Hoaglin, D. and Velleman, P. (1995), ”A Critical Look at Some Analyses of Major
League Baseball Salaries,” The American Statistician, 49, 277-284.

Kahn, L. (1993), ”"Free Agency, Long-Term Contracts and Compensation in Major
League Baseball: Estimates from Panel Data,” Review of Economics and Statistics, 75,
157-164.

Kaigh, W. (1995), ”Forecasting Baseball Games,” Chance, 8, 33-37.

Koop, G., Osiewalski, J., and Steel, M.F.J. (1997), “Bayesian Efficiency Analysis Through
Individual Effects: Hospital Cost Frontiers,” Journal of Econometrics, 76, 77-105.

Koop, G., Steel,. M.F.J. and Osiewalski, J. (1995), ”Posterior Analysis of Stochastic
Frontier Models using Gibbs Sampling,” Computational Statistics, 10, 353-373.

Lackritz, J. (1996), "Two of Baseball’s Great Marks: Can They Ever Be Broken?”
Chance, 9, 12-18.

Reinhard, S., Lovell, C.A.K., and Thijssen, G. (1999), “Econometric Application of
Technical and Environmental Efficiency: An Application to Dutch Dairy Farms,” American
Journal of Agricultural Economics, 81, 44-60.

Schall, T. and Smith, G. (2000), "Do Baseball Players Regress Towards the Mean?”
The American Statistician, 54, 231-235.

Schmidt, P. and Sickles, R. (1984), ”Production Frontiers and Panel Data,” Journal of
Business and Economic Statistics, 2, 367-374.

Scully, G. (1974), "Pay and Performance in Major League Baseball,” American Eco-
nomic Review, 64, 915-930.

Tsionas, E. (2000), ”Full Likelihood Inference in Normal-Gamma Stochastic Frontier
Models,” Journal of Productivity Analysis, 13, 183-205.

23



Watnik, M. (1998), ”Pay for Play: Are Baseball Salaries Based on Performance?” Jour-
nal of Statistics Education, 6, 1-5.

7 Appendix A: The Prior for (3, Ao, A1, h, a, q, s)

We use a prior of the form:

p(B, Ao, A1, by @, q, 8) = p(B)p(Xo)p(A1)p(h)p(a)p(q)p(s).

For 3, we assume:

p(B) o< fr(Blbo, Hy),

and make the noninformative choices of by = 0;, and Hy = 10™* x I,. Next we assume

p()\o) = fG(/\0|AOO;Am);

with positive prior hyperparameters Ay, Ag;. We choose these so that E(Ag)=3 and var(\g)=1
and hence Aoy = 9,Ay; = 3. In other words, we are centering the prior over a Gamma dis-

tribution with an interior mode. Furthermore,

p()‘1> = fG(/\1|A107 An);

with positive prior hyperparameters Ao, A;; which we choose as A\ = 3 and A;; = — In(7%).
If we had Ao = 3 (i.e. its prior mean) then these values would imply that the prior median
efficiency is 7%, which is a natural quantity to elicit. We set 7% = 0.70. The reader is
referred to van den Broeck, Koop, Osiewalski and Steel (1994) for a further discussion of
prior elicitation in this class of models and justification of such choices as being reasonable,
but noninformative relative to the data.

For h we take:
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p(h) = fa(hlne/2,a0/2),

and set ng/2 = 1 (which leads to an Exponential prior for h) and aq/2 = 107%. These
values imply large prior uncertainty.
Since the components of « are all in the interval (0,1) and sum up to one, an obvious

choice of a prior distribution is a Dirichlet with p.d.f.

p(e) = fh '(ala),

with hyperparameter vector a = (ay,...,a,)’. We use the diffuse choice of a = ¢,, which
makes the prior Uniform over the (p — 1)-dimensional unit simplex.

For q we take an Exponential prior,

p(q) « falqll, d).

We adopt the diffuse choice of d = 1075.
We assume p independent Gamma distributions for the components of s:
p p
p(s) =TT p(s;) =TT falsilbsi c)).
J=1 J

1

We make a diffuse choice of b; = 1 and ¢; = 107° for all j.

8 Appendix B: MCMC Algorithm

Our MCMC algorithm involves sequentially drawing from the posterior conditionals

described in the body of the text. The first of these is:
N
p(Z|Y7ﬁ7 )‘07 )‘17 h7 «Q,dq, S) X H Z;\Oilf]{](zﬂmi; &)I(zz Z 0)7

i=1
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where m; is the " element of the N—vector
= (D'D)"M{D'(XB —log(0)) — h™'\i},
and R; is the i"* diagonal element of the N x N diagonal matrix
R=h"YDD)™*

Since the elements of z are conditionally independent they can be drawn separately. In
practice, we use a modified version of the acceptance algorithm of Koop, Steel and Osiewal-

ski (1995) to draw from this non-standard density. We use fg(z:| Ao, A1) to take candidate

draws, 2", which are then are accepted with probability:
, 2
exp {—% tTi1 (log (9(z't)) —xy 3+ Zz') }
. 2
oo {8 (108 () a4 )
where z°P" = max {—w, 0} and z; = (l'(z',t,l)? T(it,2)5 -+ x(i,t,k))/'

The p.d.f. of the posterior conditional distribution of )\ is given by:

p(A0|Y7 <, ﬂ? h; @, q,Ss, /\1) )\N/\O)\_OO F eXp l(z ln Zz AOI) )‘0‘| .

This distribution is non-standard, but a simple acceptance algorithm can be derived follow-
ing Tsionas (2000). Candidate draws, Aj*", are taken from fg (Ao|1, A) where A is chosen
to maximize the acceptance probability. To obtain the upper bound which appears in the

acceptance algorithm we must find \§ which solves the following equation:

B+ XNt = NU(N) =0

where U(.) is the digamma function (i.e. ¥(z) = dln—r(“) where I'(.) is the Gamma function)

and B = NIn(\;) + XN, In(2;) — Ag;. We solve this equation for A} using a simple one-
dimensional grid search. The optimal value of A is then A* = A\ *.Candidate draws from

fa (Mo|1, A*) are then accepted with probability
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where
In(R(X\g)) = (B+ A" ) Xg —In (A") — N1In (T'(Ng)) + (Ago — 1) In (Ng) -

The conditional posterior distribution of \; is:

N
p()\l‘y7 Z?ﬁ? h7 «,q, s, )\0) = .fG <>\1‘A10 + NAO)AH + Z’%) .

i=1
The conditional posterior distribution of (3 is:

p(ﬁ’YwZ; )\07 )\17 haa7Q7 S) = f]lf[(ﬁ‘b*a H*_l)

where

H, = Hy + hX'X,

and

b, = H_ *{Hoby + hX'(log (6) + Dz)}.

For h we obtain:

no+ NT ay+ (log (0) — X3+ Dz) (log (0) — X3+ D=z
p(h|Y,z,A0,A1,@,a,q,S):fG<h| o+ VT 0 (log (8) — X 13 2)( g() — XB )>'

For o we obtain the following non-standard p.d.f.:

p(@‘xza)\m)\l;ﬁ; haQa 8) X

— S
Zj J
aj+squT—1 q.q
& [ RDICHY
J i, J

exp {—2%2(1% (6) — X+ D2) (log (6) — X3 + Dz.)}
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Note that log (f) depends on a. Based on the experience of Fernandez, Koop and Steel
(2000, 2001a,b), we use a random walk Metropolis-Hastings algorithm which seems to
work very well. In particular, we use a (p — 1)-variate Normal candidate-generating density
(proposals outside the support of a are never accepted). The mean of the Normal is
given by the previous draw and the variance is calibrated in preliminary MCMC runs so
that the acceptance probability is in the region of 5 — 50%. Chib and Greenberg (1995)
provide a simple discussion of various Metropolis-Hastings algorithms and discuss the issue
of what reasonable acceptance rates are. The acceptance probability is merely the ratio of
p(alY, z, Mo, A1, B, h, q, s) evaluated at the candidate draw to this density evaluated at the
last accepted draw.

The conditional posterior for ¢ is also non-standard and is given by:
p(alY; 2, 8, Ao, A, by s) oc NP exp(—dg) exp {—Alg)}

where
i P adyl
Alq) = z(log (/) — X8+ Dz)'(log (§) — XB+ Dz) + > _s;log %(’t’l) .
2 it XY (it.5)
In this case, too, we use a random walk Metropolis-Hastings algorithm with a Normal
candidate-generating density calibrated as above.

We draw separately each of the p components of s. The conditional posterior distribu-

tion of s;, j =1,...,p (also given the remaining components of s) has p.d.f. on (0, c0):

p(sj’Y7Z7>\07>\17ﬁ7 h7a7Q> {Sh : h 7é ]}) X
F Z S NT - Elaqui
—é(;)l]\)ﬁr 33] ! exp [_Sj {Cj + Zlog (—lq (5,8, )
J it

Y i)
In order to draw from this distribution, a random walk Metropolis-Hasting algorithm is

used in the same manner as for ¢ or a.
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The results of Fernandez, Osiewalski and Steel (1997) and Fernandez, Koop and Steel
(2000) imply that the posterior is proper and the MCMC algorithm will converge. However,
we have yet to find a proof that posterior means and higher moments exist for parameters
other than the efficiencies (although numerical evidence suggests that higher moments of
all parameters do exist). Hence, except for the efficiencies, we present posterior medians
and HPDIs (which do exist) instead of posterior means and standard deviations.

Our final results are based on 260,000 MCMC replications. The first 10,000 are dis-
carded to mitigate startup effects. Of the remaining 250,000, we retain every 10th replica-
tion to break serial correlation in our draws (and minimize storage costs). The posterior
properties reported are, thus, based on 25,000 replications.

MCMC convergence is monitored both formally and informally. Informally, several
experimental runs with dispersed starting values provided posterior results which were
essentially identical. Formally, we used a diagnostic suggested by Geweke (1992) which
compares the means based on first 10% and final 50% of the draws relative to their numerical
standard errors. If the sampler has converged, this statistic is standard Normal. We
calculated this diagnostic for the efficiencies of the first five players and obtained statistics

which were all less than 1.0, indicating convergence.
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