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ABSTRACT

This paper considers a Bayesian analysis of the linear regression model under indepen-

dent sampling from general scale mixtures of Normals. Using a common reference prior,

we investigate the validity of Bayesian inference and the existence of posterior moments of

the regression and scale parameters. We �nd that whereas existence of the posterior distri-

bution does not depend on the choice of the design matrix or the mixing distribution, both

of them can crucially intervene in the existence of posterior moments. We identify some

useful characteristics that allow for an easy veri�cation of the existence of a wide range of

moments. In addition, we provide full characterizations under sampling from �nite mix-

tures of Normals, Pearson VII or certain Modulated Normal distributions. For empirical

applications, a numerical implementation based on the Gibbs sampler is recommended.
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1. INTRODUCTION

The present paper focuses on Bayesian inference in the context of the linear regression

model with independent errors distributed as scale mixtures of Normals, in order to allow

for exible tails. More explicitly, we shall analyze the existence of the posterior distribution

and of its moments under a commonly used improper prior, and comment on numerical

techniques for evaluating posterior quantities of interest. Whereas a growing number of

Bayesian studies have used this model, the theoretical foundations have, so far, not been

established. This paper aims to �ll that gap.

It has long been recognized that the usually convenient assumption of Normal sam-

pling might be overly restrictive for many practical modelling situations. In particular, the

thin tails of a Normal distribution are often not a natural choice. An early contribution

to this literature is Je�reys (1961), whereas Maronna (1976) and Lange, Little and Taylor

(1989) discuss maximum likelihood estimation for models with heavier-tailed Student�t

disturbances. Bayesian results for outlier problems are provided in West (1984) for the

wider class of scale mixtures of Normals; however, he does not address the issue of exis-

tence of the posterior distribution and its moments under an improper prior distribution.

Geweke (1993) considers the same Bayesian model as treated here for the case of Student-t

sampling, but an unfortunate error in his main proof invalidates his results on posterior

propriety and the existence of moments. The present analysis is thus required in order to

validate the interesting numerical results obtained in Geweke (1993) on the basis of the

Gibbs sampler, and, more generally, to establish a basis for feasible Bayesian inference. In

addition, we cover the entire class of scale mixtures of Normals.

The class of scale mixtures of Normals is generated by allocating to the disturbance

of the ith observation, say "i, the following distribution:

"i
d
= zi=�

1=2

i ; (1:1)

where zi is a Normal(0,1) random variable and �i an independent random variable on

(0;1). By assuming di�erent probability distributions P�i for �i, we map the entire class
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of scale mixtures of Normals. Table 1 groups some known distributions of "i implied by

(1:1) together with the corresponding distributions for �i. It is clear from this table that

quite a rich class of continuous symmetric and unimodal distributions can be described by

scale mixtures of Normals, so that processes with thicker-than-Normal tails will often be

adequately modelled by choosing a distribution from this class. A formal characterization

of the extent of this class is given in e.g. Kelker (1970, Th.10) or Fang, Kotz and Ng

(1990, Th.2.21). Viewed in a multivariate spherical context, scale mixtures of Normals are

the only spherical distributions that can coherently be extended in dimension inde�nitely.

In other words, they can always be interpreted as the marginals of higher-dimensional

spherical distributions.

We can cite a number of examples that testify to the growing impact of scale mix-

tures of Normals in applied statistical practice. Modelling distributions of high-frequency

�nancial data with the help of scale mixtures of Normals is recently becoming more and

more popular. In the context of stochastic volatility models, Harvey, Ruiz and Shephard

(1994) and Jacquier, Polson and Rossi (1995) use a Student-t and in Shephard (1994a,b)

we �nd an Exponential Power distribution and a �nite mixture of Normals. Bauwens and

Lubrano (1998) consider GARCH models with Student-t disturbances. Lange et al. (1989)

report a number of examples from statistical practice where Student-t models provide a

better �t to the data than their Normal counterparts. For modelling macroeconomic time

series, Geweke (1993) �nds relatively high posterior odds in favour of Student-t sampling

as opposed to Normal sampling.

We shall use a linear regression model under independent sampling from a scale mix-

ture of Normals with known mixing distribution P�i . We complete the Bayesian model

with a commonly used improper Je�reys' prior on the parameters (under \independence").

The latter prior was shown by Fern�andez and Steel (1999a) to also have the interpreta-

tion of the \reference prior", based on formal information theory arguments [see Berger

and Bernardo (1992)]. Under independent sampling, Je�reys' prior is a popular choice in
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Table 1. Classes of Scale Mixtures of Normals

Distribution of "i Mixing Distribution on �i Reference

1. Finite mixture of Normals Discrete with �nite support

1a. Normal Dirac

1b. contaminated Normal most mass in one point Johnson and Kotz (1970)

2. Generalized Hyperbolic Generalized Inverse Gaussian Barndor�-Nielsen et al. (1982)

2a. Hyperbolic h / ��2

i expf�1

2
( �
�i

+ ��i)g Barndor�-Nielsen et al. (1982)

� � 0; � > 0

2a(i). Laplace � = 0; � = 1 Andrews and Mallows (1974)

2b. Pearson type VII Gamma(�=2; �=2) �; � > 0 Johnson and Kotz (1970)

2b(i). Student-t � = �

2b(i)1. Cauchy � = � = 1

3. symmetric h = ��2

i

P1
k=0

�
�2�

k

�
Barndor�-Nielsen et al. (1982)

z-Distribution � �+k

B(�;�)
expf�

(�+k)
2

2�i
g; � > 0

3a. Generalized Logistic � = 1; 2; : : : Barndor�-Nielsen et al. (1982)

3a(i). Logistic � = 1 Andrews and Mallows (1974)

3b. Hyperbolic Cosine � = 1

2
Barndor�-Nielsen et al. (1982)

4. symmetric Stable(�), ��1

i is positive Stable(�
2
) Feller (1971)

0 < � < 2

4a. Cauchy � = 1

5. Exp. Power(�), 1 � � < 2 h / �
� 1

2

i � p.d.f. of pos. Stable(�
2
) West (1987)

5a. Laplace � = 1

6. Modulated Normal type I Pareto(1; �=2) on (1;1), � > 0 Romanowski (1979)

7. Modulated Normal type II Beta(�=2; 1) on (0; 1), � > 0 Rogers and Tukey (1972)

7a. Slash � = 1 Rogers and Tukey (1972)

7b. Q-Distribution � = 2 Rogers and Tukey (1972)

(h indicates the p.d.f. of �i)

the absence of compelling prior information. For time series models, the application of

Je�reys' principle is more contentious, as is evidenced by the discussion in Phillips (1991).

The explicit aim of this paper is the study of existence of the posterior distribution and

the posterior moments of the parameters. Especially in view of the added complexity of

sampling from scale mixtures of Normals, numerical methods will typically be required, and

usually the Gibbs sampler [proposed by Geweke (1993) for Student-t sampling] provides an
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attractive approach, as illustrated in Subsection 5.2. This carries some inherent dangers,

however, quite beyond numerical accuracy. The Gibbs sampler essentially approximates

drawings from a joint distribution by a Markov chain of drawings from the full conditional

distributions [see e.g. Gelfand and Smith (1990) and Tierney (1994)]. As e.g. Casella and

George (1992) have illustrated in an example, all the full conditionals may well be proper

distributions, without existence of the joint distribution. Hobert and Casella (1996) point

out the pitfalls of careless use of Markov chain Monte Carlo methods in cases where no

posterior distribution exists [see also Fern�andez, Osiewalski and Steel (1997)]. Thus, under

an improper prior distribution, it becomes crucial to verify propriety of the posterior in

order to validate Bayesian inference. This argument also carries over to the existence

of posterior moments of the parameters: the mere fact that the full conditional posterior

distribution of a parameter allows for a �nite moment of a certain order does not guarantee

existence of this moment in the marginal posterior distribution. The problem of higher-

order moments can even be more severe as it does not disappear by using a proper prior

distribution. Our explicit focus on the existence of the posterior distribution and its

moments is, thus, meant to indicate whether Bayesian inference is at all possible, and, if

so, which moments we can meaningfully try to calculate. We do not deal here with the

issue of how precise this inference will be in particular empirical contexts.

This paper will be concerned with n independent and identically distributed (i.i.d.)

univariate disturbances "i; i = 1; : : : ; n, as in (1:1), in contrast to the literature on mul-

tivariate scale mixtures of Normals, where we only obtain one n-dimensional vector ob-

servation [see e.g. Osiewalski (1991) and, for the special case of multivariate Student-t,

Zellner (1976)]. In the latter case, ("1; : : : ; "n)
0 is distributed as a standard n-variate Nor-

mal (z1; : : : ; zn)
0 divided by a single scalar, say, �1 with some distribution P�1 . As this

multivariate scale mixture of Normals is in the class of n-variate spherical distributions, we

know from Kelker (1970, Lemma 5) that the only intersection between our i.i.d. sampling

case and this multivariate case is that of Normality. In the course of the paper, we shall

briey compare both sampling schemes with respect to the existence of posterior moments.
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The next section of the paper introduces the Bayesian model and treats propriety of

the posterior. Conditions for the existence of moments of the regression coe�cients are an-

alyzed in Section 3, whereas Section 4 focuses on the moments of the scale parameter. The

following section deals with some practical approaches to conducting Bayesian inference

in the context of scale mixtures of Normals. Section 6 groups some concluding remarks.

Throughout the paper, the notation for distributions and probability density functions

follows DeGroot (1970). All proofs are referred to the appendix, without explicit mention

in the main text.

2. THE BAYESIAN MODEL

In this section we shall examine the linear regression model corresponding to (1:1).

In particular, we assume the observations yi 2 < (i = 1; : : : ; n) to be generated from

yi = x0i� + �"i; (2:1)

where "1; : : : ; "n are i.i.d. random variables distributed as a scale mixture of Normals. Thus,

"i
d
= zi=�

1=2

i where zi is a standard Normal random variable and �i an independent random

variable with some known probability distribution P�i on (0;1). The k-dimensional vector

xi groups the explanatory variables; we interpret (2:1) as modelling yi given xi, but we

shall not explicit the fact that we condition on xi in the sequel. The parameters introduced

in (2:1) are the regression coe�cients � 2 <k and the scale � > 0.

The sampling model is thus characterized by the density function

p(yij�; �) =

Z 1

0

�
1=2

i

(2�)1=2�
exp

�
�

�i

2�2
(yi � x0i�)

2

�
dP�i : (2:2)

Independent replications from (2:2) will constitute the sampling information regarding the

common regression and scale parameters. Let us now group the explanatory variables into

an n� k matrix X = (x1; : : : ; xn)
0 which is assumed to be of full column rank (and thus

n � k). In addition, we de�ne y = (y1; : : : ; yn)
0 as the vector of observations.
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A common choice for a non-informative prior distribution is the \independence" Jef-

freys' prior given by

p(�; �) / ��1: (2:3)

The prior in (2:3) is also the reference prior in the sense of Berger and Bernardo (1992)

for any regular distribution on "i as shown in Fern�andez and Steel (1999a).

Since the prior distribution in (2:3) is not proper, the existence of the posterior distri-

bution (de�ned as the conditional distribution of the parameters given the observables) is

not guaranteed. The results in Mouchart (1976) and Florens, Mouchart and Rolin (1990)

imply that such a conditional distribution exists only when the predictive distribution is

�-�nite, i.e. p(y) �
R
p(yj�; �)p(�; �)d�d� <1 except possibly on a set of y's of Lebesgue

measure zero in <n. In the context of the model (2:2)� (2:3), we can obtain the following

result concerning the feasibility of Bayesian inference:

Theorem 1. propriety of posterior

Under the prior in (2:3) and with n independent observations from (2:2), the conditional

distribution of (�; �) given y exists if and only if n � k + 1, for any choice of the mixing

distribution P�i . �

Note that the condition n � k + 1 is both necessary and su�cient, and does not

involve any properties of the mixing distribution. Surprisingly, the wide range of tails

accommodated within the class of scale mixtures of Normals has no inuence whatsoever

on the existence of the posterior.

Before proceeding with the remainder of the paper, a remark is in order. Note that

Theorem 1 is concerned with establishing the existence of the conditional distribution of

the parameters given the observables, which puts us on equal footing with the case where

a proper prior is used. This, however, does not rule out the possibility that p(y), the

denominator in the usual Bayes' formula, becomes in�nite in a set of y's that has Lebesgue

measure zero in <n. Whereas any such sample has, by de�nition, zero probability of being

observed under our assumed sampling model, the rounding implicit in any data set means
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that, in practice, there could be a positive probability of observing an \o�ending" value

of y. The same type of comment applies to the existence of posterior moments, examined

in the following two sections. We stress, however, that these problems are inherent to any

statistical analysis using continuous sampling distributions, and are by no means restricted

to the use of improper priors or Bayesian methods. A detailed discussion of these issues

together with a general solution within a Bayesian framework can be found in Fern�andez

and Steel (1999b).

In the sequel, we assume n � k+1 so that Theorem 1 applies and turn to the question

of existence of moments. To facilitate the discussion in the remainder of the paper, we

shall introduce the following de�nitions of characteristics of the design matrix X and the

mixing distribution P�i :

De�nition 1. singularity index for column j

Given an n � k full column-rank matrix X, we de�ne the singularity index for column

j = 1; : : : ; k as the largest number pj such that there exists a (k � 1 + pj)� k submatrix

of X of rank k � 1 which retains rank k � 1 after removing its jth column. �

From the de�nition, k� 1+ pj gives the largest number of observations in the sample

for which �j , the j
th component of �, is not identi�ed. Clearly, 0 � pj � n � k since X

is of full column-rank. A simple way of computing pj is as follows: consider all sets of

k � 1 rows of X such that the rank of the corresponding submatrix without column j is

k�1. Then pj is the maximum number of rows that can be added to any such set without

increasing the rank. If X contains rows of zeros, then pj is at least equal to the number

of such zero rows for all j = 1; : : : ; k. Furthermore, maxfpj : j = 1; : : : ; kg = 0 if and only

if every k � k submatrix of X is nonsingular.

De�nition 2. moment set and moment index

Let P�i be the probability distribution of a random variable �i in <+. We de�ne:

(i) Moment set of P�i : M =
n
s 2 < : E(�

s=2

i ) �
R1
0

�
s=2

i dP�i <1
o
:

(ii) Moment index of P�i : m = supfs � 0 : s 2 M and � s 2 Mg. �
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Clearly, 0 2 M since P�i is a probability distribution, and thus m � 0 is always

de�ned.

3. POSTERIOR MOMENTS OF REGRESSION COEFFICIENTS

In this section, we denote by (r1; : : : ; rk) the order of the moment of � = (�1; : : : :�k)
0

and de�ne r =
Pk

j=1
rj . Our most general result is stated in the following theorem:

Theorem 2. posterior moments of �

Consider the Bayesian model in (2:2)� (2:3) and any choice of rj � 0 for j = 1; : : : ; k such

that r > 0. We obtain that

(i) necessity: if r � n� k, then E(
Qk

j=1
j�j j

rj jy) =1;

(ii) su�ciency: if r < minfn�k; n�k�p(r1; : : : ; rk)+mg, where m is the moment index

of the mixing distribution P�i and p(r1; : : : ; rk) = maxfpj : rj > 0g with pj the singularity

index for column j of the design matrix X, then E(
Qk

j=1
j�j j

rj jy) <1: �

Theorem 2 only addresses the situation of non-negative moments. Using the fact that

the �rst negative moment of a Normally distributed random variable does not exist, it is

straightforward to prove that the moment in Theorem 2 is always in�nite if any rj � �1.

Theorem 2 (i) tells us that there is never any hope for the existence of moments for which

r � n� k, regardless of the characteristics of the design matrix or the mixing distribution.

Such lack of existence of moments is, therefore, due to the uncertainty about � and �

rather than to the scale mixing. On the other hand, both X and P�i intervene (through

p(r1; : : : ; rk) and m, respectively) in the su�cient condition for existence of moments with

r < n� k.

Theorem 2 fully characterizes the existence of positive posterior moments of � when-

ever X and P�i ful�l the following property:

Corollary 1. If, in the context of Theorem 2, the design matrix X and the mixing

distribution P�i are such that maxfpj : j = 1; : : : ; kg � m, then

E(

kY
j=1

j�j j
rj jy) <1 if and only if r < n� k: �

11



Thus, under the condition of Corollary 1 the same posterior moments exist as under

Normal sampling. We mention two important special cases where Corollary 1 applies:

(i) Every k � k submatrix of X is nonsingular.

In this case maxfpj : j = 1; : : : ; kg = 0 � m, and all posterior moments of � with

r < n�k exist for any P�i . Therefore, the mixing distribution is entirely irrelevant for the

issue of existence of posterior moments. As examples of this situation, we can mention the

location-scale model (corresponding to k = 1 and xi = 1, i = 1; : : : ; n) and models with

the xi's independently drawn from continuous k-variate distributions. We wish to remind

the reader that the �nite posterior moments of � can (and typically will) take di�erent

values for di�erent mixing distributions. The order up to which moments of � are �nite,

however, is robust with respect to the choice of P�i , i.e. in the entire class of scale mixtures

of Normals.

(ii) The moment index of P�i veri�es m � n� k.

Again, Corollary 1 applies, regardless of the form of the matrix X (of rank k). The

design matrix, however, will typically inuence the actual values of such moments. Sam-

pling from �nite mixtures of Normals leads to m =1, thus providing an example of this

situation.

In many situations not covered by Corollary 1, Theorem 2 can still provide an answer.

If, given a particular order (r1; : : : ; rk), the inequality p(r1; : : : ; rk) � m is veri�ed, then

Theorem 2 shows that such a posterior moment of � exists if and only if r < n�k. However,

when p(r1; : : : ; rk) > m, the necessary condition (r < n � k) and the su�cient condition

(r < n � k � p(r1; : : : ; rk) + m) do not coincide and Theorem 2 remains inconclusive if

r 2 [n � k � p(r1; : : : ; rk) +m;n � k). By further specifying P�i , we can re�ne Theorem

2, as evidenced by the following theorem concerning marginal posterior moments of the

components of �:
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Theorem 3. �nite mixtures of Normals, Pearson VII and Modulated Normal sampling

For the Bayesian model in (2:2)� (2:3), we obtain for any value of r > 0:

E(j�jj
rjy) <1 if and only if

(i) r < n � k for a discrete mixing distribution with �nite support (sampling from �nite

mixtures of Normals), or a Pareto(1; �=2) mixing distribution with � � 1 (Modulated

Normal type I sampling),

(ii) r < minfn�k; n�k�pj+�(n�k�pj+1)g for a Gamma(�=2; �=2)mixing distribution

(Pearson VII sampling), or a Beta(�=2; 1) mixing distribution (Modulated Normal type II

sampling). �

Whereas the characterization for �nite mixtures of Normals is a direct consequence

of Theorem 2 (since m = 1), for the cases of Pearson VII and Modulated Normal type

I and II sampling we have improved upon Theorem 2, which leads to r < n � k and

r < minfn� k; n� k � pj + �g as necessary and su�cient conditions, respectively; taking

the added information on the mixing distribution into account allows us to characterize

the range of positive orders for which posterior moments of �j exist. Thus, the su�cient

condition in Theorem 2 is too conservative if and only if � < pj under Modulated Normal

type I sampling with � � 1, and if and only if � < pj < n � k for Pearson VII and

Modulated Normal type II models. In the former case, Theorem 3 (i) states the existence

of pj�� additional moments over those guaranteed by Theorem 2, whereas, by Theorem 3

(ii), the gain in the latter case is pj�� moments if � � pj=(n�k�pj+1) and �(n�k�pj)

moments otherwise. Theorem 3 also illustrates the fact that, in general, both the design

matrix and the mixing distribution intervene in the issue of existence of moments, since

neither can be neglected in the full characterization provided in (ii). In addition, Theorem

3 (ii) shows that di�erent components of � can possess marginal posterior moments up to

di�erent orders.

Observe that under Pearson VII sampling the parameter � of the Gamma mixing

distribution does not intervene in the issue of existence of marginal posterior moments.
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Obviously, when � = � it specializes to the important case of Student-t sampling. Fur-

thermore, as � tends to in�nity for this Student sampling and for both types of Modulated

Normal distributions, the sampling distribution converges to Normality (which is also a

special case of �nite mixtures of Normals with P�i a Dirac distribution).

Finally, we can compare the i.i.d. sampling case treated in this paper with sampling one

single vector y from an n-dimensional distribution. If we specialize the results obtained

by Osiewalski and Steel (1992) to the class of scale mixtures of multivariate Normals,

we note that the posterior distribution of � and, therefore, its existence of moments, is

entirely una�ected by departures from Normality within this class [see also Zellner (1976)

for the special case of the multivariate Student-t model and for analogous results in a

Maximum Likelihood framework]. Thus, in this multivariate context, posterior moments

of � always exist as long as r < n � k, irrespective of the (full column-rank) matrix X

or the mixing distribution. We conclude that the present case of independent sampling,

generally, requires stronger conditions for the existence of posterior moments of � as shown

by Theorem 3 (ii).

4. POSTERIOR MOMENTS OF SCALE PARAMETER

In this section, we shall focus on the existence of moments of the scale � of any order

r 2 <.

Theorem 4. posterior moments of scale

The Bayesian model in (2:2)� (2:3) leads to

(i) necessity: if r � n� k, then E(�rjy) =1;

(ii) su�ciency: if r 2 (�1; n � k) \ M, where M is the moment set of P�i , then

E(�rjy) <1: �

As was the case with the regression coe�cients, posterior moments of � of order

r � n�k never exist, whatever the choice of the design matrixX or the mixing distribution

P�i . For values of r < n� k, Theorem 4 (ii) provides a su�cient condition for existence of

the rth moment that relies on the existence of moments of P�i , namely that r 2 M. Thus,
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for r = 0 we can deduce Theorem 1 for propriety of the posterior distribution, using that

0 2 M, as remarked in De�nition 2.

The necessary and su�cient conditions presented in Theorem 4 do not coincide in

general. The following theorem provides a full characterization of the existence of posterior

moments of � for some distributions of practical interest.

Theorem 5. �nite mixtures of Normals, Pearson VII and Modulated Normal sampling

For the sampling model in (2:2) and the prior in (2:3) we obtain that

E(�rjy) <1 if and only if

(i) r < n � k for a discrete mixing distribution with �nite support (sampling from �nite

mixtures of Normals), or a Pareto(1; �=2) mixing distribution with � � 1 (Modulated

Normal type I sampling),

(ii) �(n � k)� < r < n � k for a Gamma(�=2; �=2) mixing distribution (Pearson VII

sampling) or a Beta(�=2; 1) mixing distribution (Modulated Normal type II sampling).

�

Clearly, sampling from �nite mixtures of Normals leads to the moment set M = <,

from which we can immediately conclude, through Theorem 4, that in this case the rth

posterior moment of � is �nite if and only if r < n � k. On the other hand, the char-

acterizations for the cases of Pearson VII and both types of Modulated Normal sampling

do not follow from Theorem 4, but are obtained through exploiting the properties of the

corresponding mixing distributions.

Under Modulated Normal type I sampling with � � 1 all moments of order smaller

than n � k exist from Theorem 5. The theorem also shows that when sampling within

the Pearson VII or the Modulated Normal type II classes, moments of order r 2 [0; n� k)

are always assured whereas existence of negative order moments is entirely determined by

the parameter � of the mixing distribution. Under Pearson VII sampling, the value of

the parameter � in the Gamma mixing distribution does not intervene as was the case in

Theorem 3 for marginal posterior moments of �. Choosing � = � we obtain the important
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special case of Student-t sampling, and as � then tends to in�nity, we converge to the

Normal case where the rth moment of � is �nite if and only if r < n� k.

The case of sampling one single vector observation from a scale mixture of multivariate

Normals was shown in Osiewalski and Steel (1996) to lead to a necessary and su�cient

condition for existence of moments of � that corresponds to (ii) in Theorem 4, where n

now represents the dimension of the vector observation instead of sample size. Thus, the

latter case, which only intersects with the model analyzed here under Normality, generally

requires a more stringent condition. This is clearly shown by Theorem 5, where e.g. under

Pearson VII or Modulated Normal type II sampling the condition of Theorem 4 (ii) is not

satis�ed for r 2 (�(n� k)�;��], but the rth posterior moment of � is, nevertheless, �nite.

As a �nal remark, we note that the results in Theorems 4 and 5 can alternatively be

used to assess the propriety of the posterior distribution under the more general prior

p(�; �) / �r�1: (4:1)

Although the independence Je�reys' prior in (2:3) is widely used in a non-informative

context, the more general prior in (4:1) could be of interest in some cases. Existence of the

gth-order posterior moment of � under the prior in (4:1) can also be examined by means of

Theorems 4 and 5, replacing r by r+g. On the other hand, existence of posterior moments

of the regression coe�cients is much more di�cult to establish. Note that this problem is

equivalent to analyzing the existence of cross moments for � and � with our present prior

in (2:3), for which we have been unable to �nd simple and useful results. This, however,

does not preclude posterior inference on � under the prior in (4:1). Once the propriety of

the posterior distribution has been established, we could simply report quantities that are

always known to exist, such as quantiles or highest posterior density regions, instead of

posterior moments of �.
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5. NUMERICAL ASPECTS

Once we have made sure that a Bayesian analysis can meaningfully be conducted

(Section 2) and the moments we are interested in actually exist (Sections 3 and 4), we

will generally need numerical tools to conduct the necessary analysis. This section gives a

generic description of two distinct numerical strategies that could be employed. Both start

from the simple observation that given �i the sampling model in (2:2) is merely the Normal

linear regression model. Thus, the posterior analysis of � and �, using the reference prior

in (2:3) and conditioning on � = (�1; : : : ; �n)
0, is entirely standard and described by the

following Normal-Gamma density function on (�; ��2):

p(�; ��2j�; y) = fkN

�
�jb(�); �2(X 0�X)�1

�
fG

�
��2j

n� k

2
;
s(�)

2

�
; (5:1)

where � = Diag(�i), b(�) = (X 0�X)�1X 0�y and s(�) = y0f�� �X(X 0�X)�1X 0�gy:

The treatment of the �i's will constitute the non-standard part of the analysis of our

Bayesian model. We distinguish the following two approaches:

5.1. Independent Monte Carlo

Here we generate independent drawings from the distribution of (�; �; �) given y by

drawing consecutively from (5:1) and from the distribution of � given y, which is propor-

tional to

g(�)

nY
i=1

P�i ; (5:2)

where we have de�ned g(�) = fDet(X 0�X)g�1=2s(�)�(n�k)=2
Qn

i=1
�
1=2

i : The implicit as-

sumption underlying the notation in (5:2) is that the probability distribution of � given y

is absolutely continuous with respect to
Qn

i=1
P�i with Radon-Nikodym derivative propor-

tional to g(�). Note that g(�) in (5.2) is simply the result of integrating the data density

given (�; �; �) with the prior of (�; �), and can be found immediately from (A:2) in the

appendix with rj = 0; j = 1; : : : ; k. Thus, g(�) corresponds to the integrand in (A:6) with

l = 0 or, equivalently, to that in (A:16) with r = 0.

As a result of integrating out � and �, the components �1; : : : ; �n of � do not pre-

serve independence conditionally upon y, which seriously complicates drawing from (5:2).
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From the proof of Theorem 2 [see (A:8) in the appendix], we know that g(�) is a bounded

function of �. Thus, in general, we can use rejection sampling [see, e.g. Devroye (1986)]

to draw from (5:2), generating drawings from
Qn

i=1
P�i and accepting with a probability

proportional to g(�). Especially for large sample size, n, this can, however, prove to be

very ine�cient. An alternative procedure for generating drawings from (5:2) is importance

sampling, as described in e.g. Geweke (1989). We then need to choose a convenient proba-

bility distribution (importance function) on <n
+
from which to draw �, that, ideally, closely

resembles (5:2) and dominates it in the tails. Again, numerical problems could occur for

moderate or high values of n.

In the special case where P�i is a discrete distribution with support on, say, q points

(sampling from a �nite mixture of Normals), we can use (5:2) to evaluate the probability

mass attached to each of the qn possible values for � = (�1; : : : ; �n) given y. If qn is not

prohibitively large, we can immediately evaluate quantities of interest from (5:1), without

recourse to numerical methods. Clearly, if q = 1, we have the standard Normal regression

model.

Generally, drawing from the n-variate distribution in (5:2) will be cumbersome, and,

therefore, the following alternative strategy is outlined.

5.2. Gibbs Sampling

This Markov chain Monte Carlo method is based on the full conditional distributions

[see e.g. Gelfand and Smith (1990) and Tierney (1994)]. For (�; �) given � the posterior

distribution is described by (5:1). To complete the Gibbs sampler we need the distribution

of � given (�; �; y), which is proportional to :

nY
i=1

gi(�i)P�i ; where gi(�i) = fG

�
�ij

3

2
;
(yi � x0i�)

2

2�2

�
: (5:3)

Each pass through the sampler thus requires only two steps: one drawing from (5:1) and

one from the probability distribution proportional to (5:3). Convergence of the induced

Markov chain to the posterior distribution is ensured, since the parameter space has a

Cartesian product structure [see Roberts and Smith (1994)].
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As opposed to the situation in Subsection 5.1, the �i's are independent given y and

(�; �), which greatly facilitates drawing the vector (�1; : : : ; �n). A general rejection sam-

pling strategy can be used where each �i is drawn from P�i and accepted with probability

f�i�
�2(yi�x0i�)

2g
1
2 exp[1

2
f1��i�

�2(yi�x0i�)
2g], which corresponds to gi(�i) divided by

its maximum value. If required, more carefully tailored rejection samplers can, of course,

be designed. Alternatively, we could use e.g. the Metropolis-Hastings algorithm [see e.g.

Tierney (1994)] to draw from (5:3) within the Gibbs sampler. Most importantly, the overall

performance of the rejection or Metropolis step is not adversely a�ected by the necessity

to draw in n dimensions: we just require n one-dimensional sampling schemes. In most

practical situations, this will more than o�set the inherent e�ciency loss (with respect to

Independent Monte Carlo) due to the serial correlation between Gibbs drawings.

The Gibbs sampler simpli�es considerably in a number of special cases:

If P�i is a Gamma(�=2; �=2) distribution, giving rise to a Pearson type VII sampling

distribution in (2:2), we retain a Gamma distribution for the full conditional of each �i,

i.e. each of the n factors in (5:3) is described by the density function:

p(�ij�; �; yi) = fG

�
�ij

� + 1

2
;
�+ ��2(yi � x0i�)

2

2

�
; (5:4)

which we can draw from easily. For the Student-t case, Geweke (1993) uses a similar Gibbs

sampler, and Lange et al. (1989) also mention the conditional distribution in (5:4).

In the Modulated Normal type II class, introduced by Rogers and Tukey (1972), where

the mixing distribution P�i is a Beta(�=2; 1) distribution, we obtain

p(�ij�; �; yi) / fG

�
�ij

� + 1

2
;
(yi � x0i�)

2

2�2

�
I[0;1](�i); (5:5)

i.e. a truncated Gamma distribution.

Sampling from a Generalized Hyperbolic distribution corresponds to a Generalized

Inverse Gaussian mixing distribution [see Barndor�-Nielsen et al. (1982)]. Then, the factors

in (5:3) will still be Generalized Inverse Gaussian distributions with density function:

p(�ij�; �; yi) / �
�(+ 1

2
)

i exp�
1

2

h �
�i

+ �i

n
� +

(yi � x0i�)
2

�2

oi
; (5:6)
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where  2 < and � and � take strictly positive values. In addition, for negative , � can

be 0 and for positive values of  the same holds for �. As can be veri�ed from Table

1, choosing  = 1 corresponds to sampling from a Hyperbolic distribution, whereas the

sampling distribution becomes Laplace if we also take � = 0 and � = 1. Drawing from (5:6)

can be implemented in quite an e�cient manner, as explained in Devroye (1986, p.479-80).

In addition, the Pearson type VII family, discussed above, is also a subclass of the class of

Generalized Hyperbolic distributions. In particular, when we take  = ��=2, � = � and

� = 0 we obtain the Gamma(�=2; �=2) mixing distribution and (5:6) reduces to (5:4).

Finally, for �nite mixtures of Normals with q possible values for each �i, the Gibbs

sampler provides an alternative in those cases where direct evaluation (using (5:1) and

(5:2)) proves very di�cult due to a large value for qn. In contrast to the situation using

Independent Monte Carlo (Subsection 5.1), it will now typically be feasible to draw values

for � even when qn is too large for a direct analysis. All we need is to draw from the n

independent discrete distributions in (5:3), which is often straightforward even for relatively

large q and n.

6. CONCLUDING REMARKS

In this paper, we have treated the linear regression model under independent sampling

from scale mixtures of Normals. From Table 1, which groups some members of this class

of sampling distributions, it is clear that this covers a rather wide variety of behaviour.

Completing this sampling model with a common non-informative (\reference") prior, we

have investigated conditions for the validity of Bayesian inference and the existence of the

posterior moments of the regression coe�cients and the scale parameter.

There are three characteristics that can inuence this existence of moments:

(1) the quantity n� k, i.e. the sample size minus the number of regressors in the model,

(2) the structure of the design matrix X, always of full column rank,

(3) the mixing distribution P�i .
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Throughout, existence of moments will be inuenced by (1), whereas (2) and (3) do not

always intervene. Our main theoretical results are presented in Theorems 1-5.

In order to implement a Bayesian analysis of the models treated here, and to actually

evaluate the moments that can be shown to be �nite, we typically require numerical meth-

ods. We mention two distinct strategies in Section 5, and conclude that, especially for

moderate or large sample size n, Gibbs sampling seems preferable to Independent Monte

Carlo.

The assumption of i.i.d. error terms was made here as it corresponds to many empirical

modelling situations, but it is by no means crucial for our results; most of the techniques

used in our proofs can be used and the analysis can be extended straightforwardly to the

case where P�i varies across the observations i = 1; : : : ; n. In addition, we could even

handle the case where the �i's are not independent, but � = (�1; : : : ; �n)
0 follows some

joint distribution on <n
+
. This situation would arise naturally if each P�i depended on a

common unknown parameter, for which a prior distribution was assumed. Markov chain

Monte Carlo methods can easily be adapted to handle such extensions, as demonstrated

in Fern�andez and Steel (1998) for the case of (skewed) Student sampling with unknown

degrees of freedom. Of course, as we allow for more exibility on the distribution of �, our

theoretical results will inevitably become less conclusive. Finally, an issue of importance

that arises in this more general context of an unknown mixing distribution is how much

we can expect to learn about it from the data. Intuitively, one would expect that a large

number of observations is required, as the parameters of the mixing density are often largely

determined by more extreme observations and not by the bulk of the data. Whereas this

topic falls outside the scope of the present paper, which deals exclusively with the case of

known mixing distribution, it is quite relevant for empirical work and certainly deserves

further investigation.
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APPENDIX: PROOFS

We �rst introduce some de�nitions and lemmas which will facilitate the proofs of the

theorems. The notation used in the appendix is consistent with the one used in the body

of the paper; thus, y = (y1; : : : ; yn)
0 is the vector of observations, X = (x1; : : : ; xn)

0 is the

n� k design matrix of rank k, � = Diag(�1; : : : ; �n) and � = (�1; : : : ; �n)
0.

De�nition 3. For � 2 <n
+
, we de�ne �(1) � : : : � �(n) to be the ordered �i's.

De�nition 4. For � 2 <n
+
, we de�ne f�m1

; : : : ; �mk
g as the set of �i's that veri�es

Qk

i=1
�mi

= max
nQk

i=1
�si : 1 � s1 < : : : < sk � n and Det(xs1 ; : : : ; xsk) 6= 0

o
; where

Det(xs1 ; : : : ; xsk) denotes the determinant of the submatrix of X corresponding to the

observations ys1 ; : : : ; ysk .

The following lemmas provide bounds on functions of � that will repeatedly appear

in the proofs of the theorems. These bounds are given up to proportionality constants,

which can depend on the �xed values of X and y (see also the Remark after Lemma 1).

Lemma 1. Det(X 0�X) has upper and lower bounds which are both proportional to

Qk

i=1
�mi

.

Remark. Lemma 1 means that there exist positive �nite constants, 0 < C1(X) � C2(X) <

1, such that C1(X)
Qk

i=1
�mi

� Det(X 0�X) � C2(X)
Qk

i=1
�mi

: The remaining lemmas

should be interpreted similarly, with constants possibly depending on X and/or y.

Proof Lemma 1: Direct application of the Binet-Cauchy formula [Gantmacher (1959,

p. 9)] leads to Det(X 0�X) =
P

1�s1<:::<sk�n
(
Qk

i=1
�si)Det2(xs1 ; : : : ; xsk): For any func-

tions ai(�) > 0, and constants bi > 0, it is immediate that amax(�)minifbig �
P

i
ai(�)bi �

amax(�)
P

i
bi, where amax(�) = maxifai(�)g. Thus,

P
i
ai(�)bi has upper and lower

bounds proportional to amax(�). Applying this idea to Det(X 0�X), in combination with

De�nition 4, Lemma 1 follows. �
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Lemma 2. The Euclidean norm of b(�) = (X 0�X)�1X 0�y is bounded above by a �nite

constant C(X; y).

Proof: Direct application of Cramer's rule to the linear system (X 0�X)b = X 0�y leads

to the following expression for the elements of b(�): b(�)j = Det(X 0�X)�1Det(Mj);

j = 1; : : : ; k; where the matrix Mj is obtained from X 0�X substituting the jth column by

the vector X 0�y. Applying the Binet-Cauchy formula to both determinants leads to

b(�)j =

P
1�s1<:::<sk�n

(
Qk

i=1
�si)Det(xs1 ; : : : ; xsk)Det(~xs1 ; : : : ; ~xsk)P

1�s1<:::<sk�n
(
Qk

i=1
�si)fDet(xs1 ; : : : ; xsk)g

2

;

where ~xsi , i = 1; : : : ; k, denotes the vector xsi with its jth component replaced by ysi .

The result follows from a similar reasoning to the proof of Lemma 1, applied to both the

numerator and denominator of jb(�)jj, after use of the bound j
P

i
aij �

P
i
jaij for the

numerator. �

Lemma 3. For all y 2 <n barring a set of Lebesgue measure zero, the expression s(�) =

y0�y � y0�X(X 0�X)�1X 0�y has upper and lower bounds proportional to �b = maxf�i :

i 6= m1; : : : ;mkg.

Proof: De�ning the n � (k + 1) matrix L = (X : y), and subsequently applying the

Binet-Cauchy formula we obtain

s(�) =
Det(L0�L)

Det(X 0�X)
=

1

Det(X 0�X)

X
1�s1<:::<sk+1�n

�k+1Y
i=1

�si

�
Det2

�
xs1 : : : xsk+1
ys1 : : : ysk+1

�
;

which, in combination with Lemma 1, proves Lemma 3. �

Lemma 4. The jth diagonal element of (X 0�X)�1 has upper and lower bounds propor-

tional to 1=��j , where ��j = min
�
�� : � 2 fm1; : : : ;mkg and Det(jxmi

: mi 6= �) 6= 0
	
;

jxi denotes the vector xi without its j
th element and (jxmi

: mi 6= �) is the (k�1)�(k�1)

matrix obtained from (jxm1
; : : : ; jxmk

) after removing jx�.

Proof: (X 0�X)�1

jj , the j
th diagonal element of (X 0�X)�1, is computed as (X 0�X)�1

jj =

Det(Mjj)=Det(X 0�X); where Mjj is the matrix obtained from X 0�X by removing both
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the jth row and column. Applying the Binet-Cauchy formula, Det(Mjj) is seen to be equal

to
P

1�s1<:::<sk�1�n
(
Qk�1

i=1
�si)Det2(jxs1 ; : : : ;

jxsk�1); which, in combination with Lemma

1, leads to Lemma 4. �

Proof of Theorem 1

This follows from either of the proofs of Theorems 2 and 4. �

Proof of Theorem 2

Existence of the (r1; : : : ; rk)
th order posterior moment of � = (�1; : : : ; �k)

0 is equivalent

to the following integral being �nite:

Z
<k�<+

� kY
j=1

j�j j
rj
�� nY

i=1

p(yij�; �)
	
p(�; �)d�d�; (A:1)

where p(yij�; �) is the sampling density in (2:2) and p(�; �) the prior in (2:3). Straight-

forward calculations and the use of Fubini's Theorem show that (A:1) is proportional to

Z
<n
+

Z
<+

Z
<k

� kY
j=1

j�j j
rj

�
fkN

�
�jb(�); �2(X 0�X)�1

�
d� ��(n�k+1) exp

�
�
s(�)

2�2

�
d�

�
� nY
i=1

�
1=2

i

�
fDet(X 0�X)g�1=2dP�1 : : : dP�n ;

(A:2)

where b(�) = (X 0�X)�1X 0�y and s(�) = y0�y�y0�X(X 0�X)�1X 0�y. Observe that s(�)

is strictly positive unless y is in the column space of X, which is an event of measure zero

provided n > k. In order to �rst solve the integral on �, which we denote by I1, we make

a variable transformation from � to q = � � b(�); thus

I1 =

Z
<k

� kY
j=1

jqj + b(�)jj
rj

�
fkN

�
qj0; �2(X 0�X)�1

�
dq: (A:3)

We now �nd a lower and an upper bound for I1 (which, of course, lead to bounds on the

integral in (A:2)). We shall use the lower bound to prove Theorem 2 (i) and the upper

bound to prove Theorem 2 (ii).

Part (i): r � n� k
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We consider the lower bound jqj + b(�)j j
rj � jqj j

rjI(0;1)(qjb(�)j); where IA(v) takes

the value one if v 2 A and zero otherwise. Applying this bound to the integral in (A:3)

and de�ning the variable t = ��1q, we see that

I1 � �r
Z
<k

n kY
j=1

jtj j
rjI(0;1)(tjb(�)j)

o
fkN

�
tj0; (X 0�X)�1

�
dt; (A:4)

where r =
Pk

j=1
rj . Next, we look at the integral with respect to � in (A:2):

Z
<+

��(n�k�r+1) exp

�
�
s(�)

2�2

�
d� /

Z
<+

h
n�k�r

2
�1 exp

�
�
s(�)h

2

�
dh;

which requires n� k � r > 0 for being �nite. Thus Theorem 2 (i) follows.

Part (ii): r < n� k

Since

kY
j=1

jqj + b(�)j j
rj =

kY
j=1

�
jqj + b(�)jj

r
�rj=r

�
X

j:rj>0

rj

r
jqj + b(�)j j

r;

where the last inequality follows directly from the Theorem of arithmetic and geometric

means, we shall focus on marginal moments for �j of order r, for those j such that rj > 0.

From Lemma 2 we know that jb(�)jj � C(X; y), j = 1; : : : ; k, for some positive quantity

C(X; y). We then obtain

jqj + b(�)jj
r � (jqj j+ jb(�)jj)

r � fjqj j+ C(X; y)gr � 2rfC(X; y)gr + 2rjqj j
r;

and, thus, if the integral

Z
<n
+

Z
<+

Z
<

jqj j
lf1N

�
qj j0; �

2(X 0�X)�1

jj

�
dqj �

�(n�k+1) exp

�
�
s(�)

2�2

�
d�

�
� nY
i=1

�
1=2

i

�
fDet(X 0�X)g�1=2dP�1 : : : dP�n ;

(A:5)

is �nite for l = 0 and l = r for all j corresponding to rj > 0, the integral in (A:2) will also

be �nite and the (r1; : : : ; rk)
th posterior moment of � will exist. Note that propriety of

the posterior distribution is equivalent to a �nite integral in (A:5) for l = 0, and thus, the

present proof also covers the proof of Theorem 1.
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After integrating out qj and �, we are left with the integral

Z
<n
+

f(X 0�X)�1

jj g
l=2
� nY
i=1

�
1=2

i

�
fDet(X 0�X)g�1=2s(�)�(n�k�l)=2dP�1 : : : dP�n : (A:6)

We decompose the domain of integration <n
+
into the n! possible orderings of f�1; : : : ; �ng.

In each of these regions we identify �m1
; : : : ; �mk

(De�nition 4), �b (Lemma 3) and ��j

(Lemma 4). Given one of these orderings, and applying the previous lemmas we obtain

upper and lower bounds of the integrand in (A:6) proportional to

F1(�) =

Q
i6=m1;:::;mk

�
1=2

i

�
l=2

�j
�
(n�k�l)=2
b

: (A:7)

The de�nition of singularity index tells us that the largest possible submatrix of X of

rank k � 1 which keeps the same rank after removing column j consists of k � 1 + pj

vectors xi. As a consequence, for each possible ordering of �1; : : : ; �n, there are at most

k � 1 + pj �i's which are larger than ��j (and this includes the k � 1 �mi
's di�erent from

��j ). Equivalently, there are at least n� k� pj �i's outside the set f�m1
; : : : ; �mk

g, which

are smaller than ��j . This implies that for l = 0 and l = r � n� k � pj ,

F1(�) �
�
l=2

�j
�
(n�k�l)=2
b

�
l=2

�j
�
(n�k�l)=2
b

= 1; (A:8)

which is integrable with respect to P�i . On the other hand, if l = r > n� k � pj , we use

the bound

F1(�) �
�
(n�k�pj)=2

�j
�
pj=2

b

�
l=2

�j
�
(n�k�l)=2
b

=

�
��j
�b

�(n�k�pj�l)=2

: (A:9)

Clearly, if both E(�
(n�k�pj�r)=2
i ) and E(�

(r+pj+k�n)=2
i ) are �nite, F1(�) will be integrable.

Using De�nition 2, if r � (n � k � pj) < m, both expectations are �nite. Thus, r <

n� k� p(r1; : : : ; rk) +m, where p(r1; : : : ; rk) = maxfpj : rj > 0g leads to integrability for

all j such that rj > 0 and Theorem 2 (ii) follows. �

Proof of Theorem 3

Pareto(1; �=2) mixing distribution with � � 1:
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The existence of the rth order marginal posterior moment of �j is equivalent to the

integral in (A:6) being �nite for l = r. Following the same reasoning as in the proof of

Theorem 2 (ii), we need to integrate F1(�) in (A:7) (with l = r) over all possible orderings

of f�1; : : : ; �ng. Since a Pareto(1; �=2) distribution has support on (1;1), we obtain

F1(�) � �
�(n�k�r)=2
b

Q
i6=m1;:::;mk

�
1=2

i and, thus, the integral of F1(�) over any ordering

of the �i's is bounded above by

Z
1<�1<:::<�n�k<1

�
�(n�k�r)=2
n�k

�n�kY
i=1

�
1=2

i

�
p(�1) : : : p(�n�k) d�1 : : : d�n�k; (A:10)

where p(�i) / �
�(�=2)�1

i for i = 1; : : : ; n � k. Using Fubini's theorem to compute (A:10)

in an iterative fashion in the order �n�k; : : : ; �1, leads to a �nite value for any r < n� k.

Gamma(�=2; �=2) and Beta(�=2; 1) mixing:

As is clear from the comments following (A:7), the largest value of F1(�) corresponds

to any ordering of the �i's for which ��j = �(n�k�pj+1). Thus, it is enough to establish

the integrability of (A:7) for any such ordering. We again compute the integral iteratively,

using Fubini's theorem.

For Gamma(�=2; �=2) mixing, which corresponds to p(�i) / �
(�=2)�1

i exp(���i=2) for

�i > 0, we use the following bounds in each of the n steps of the integration process

�
�

�

�
exp(����=2) �

Z ��

0

�
��1

i exp(���i=2)d�i �
�
�

�

�
; for any �; � > 0: (A:11)

It is easy to see that after the �rst n� k � pj steps, we are left with

Z �(n�k�pj+2)

0

�
f(n�k�pj+1)�+n�k�pj�rg=2�1

�j
exp(����j=2) d��j ; (A:12)

which is �nite if and only if r < n � k � pj + �(n � k � pj + 1). Once this condition is

imposed, the remaining steps always lead to �nite integrals.

The proof for Beta mixing is similar throughout, now using that

Z ��

0

�
��1

i d�i / �
�

�
; for any � > 0; (A:13)

instead of the bounds in (A:11). �
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Proof of Theorem 4

The rth posterior moment of � is �nite if and only if the integral

Z
<k�<+

�rf

nY
i=1

p(yij�; �)gp(�; �)d�d� (A:14)

is �nite, where p(yij�; �) and p(�; �) are given in (2:2) and (2:3) respectively. After in-

tegrating out �, using the fact that its conditional distribution given (�; �) is a k-variate

Normal, we are left with the following integral proportional to (A:14):

Z
<n
+

Qn

i=1
�
1=2

i

fDet(X 0�X)g1=2

Z
<+

��(n�k�r+1) exp

�
�
s(�)

2�2

�
d� dP�1 : : : dP�n ; (A:15)

where s(�) = y0�y � y0�X(X 0�X)�1X 0�y > 0 for all y in <n barring a k-dimensional

subspace.

Part (i): r � n� k

In order to integrate out � in (A:15) we require n� k � r > 0. Hence Theorem 4 (i).

Part (ii): r < n� k

In this case we can integrate out � and the integral in (A:15) is proportional to

Z
<n
+

� nY
i=1

�
1=2

i

�
fDet(X 0�X)g�1=2s(�)�(n�k�r)=2dP�1 : : : dP�n : (A:16)

We now decompose <n
+

into all possible orderings of f�1; : : : ; �ng. For each of these

regions, the previous lemmas lead to upper and lower bounds for the integrand in (A:16)

proportional to

F2(�) =

Q
i6=m1;:::;mk

�
1=2

i

�
(n�k�r)=2
b

� �
r=2

b
; (A:17)

where �b = maxf�i; i 6= m1; : : : ;mkg. Theorem 4 (ii) now follows immediately. �

Proof of Theorem 5

The proof is entirely parallel to that of Theorem 3, substituting F1(�) in (A:7) by F2(�)

in (A:17). The result is immediate for Pareto mixing, since F2(�) exactly corresponds to

the upper bound for F1(�) used in the proof of Theorem 3. For Gamma and Beta mixing,

we respectively apply (A:11) and (A:13) to integrate F2(�). �
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