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Noise Matters in Heterogeneous Populations

Tom Quilter

August 23, 2007

Abstract

The concept of boundedly rational agents in evolutionary game the-

ory has succeeded in producing clear results when traditional methodol-

ogy was failing. However the majority of such papers have obtained their

results when this bounded rationality itself vanishes. This paper consid-

ers whether such results are actually a good reflection of a population

whose bounded rationality is small, but non-vanishing. We also look at

a heterogenous population who play a co-ordination game but have con-

flicting interests, and investigate the stability of an equilibria where two

strategies co-exist together. Firstly, I find that results using the standard

vanishing noise approach can be very different from those obtained when

noise is small but persistent. Secondly, when the results differ it is the

non-vanishing noise approach which selects the co-existence equilibria.

As recent economic and psychology studies highlight the irrationality

of their human subjects, this paper seeks to further demonstrate that

the literature needs to concentrate more on the analysis of truly noisy

populations.

Keywords: Non-vanishing noise, equilibrium selection, strategy co-existence.
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1 Introduction

Nash Equilibrium has been the corner stone of game theory, however

the existence of multiple Nash equilibria in even the simplest of games

has proved a stubborn obstacle for theorists. When a population of ra-

tional players are in one of the Nash equilibria, the population is stuck

there.1 This equilibria could be the least efficient. And the only fac-

tor determining the equilibria selected are the preliminary beliefs of the

population.

Evolutionary game theory has led the quest to find more appealing solu-

tions. The ground-breaking papers of Kandori, Mailath and Rob(1993)

and Young(1993)2 produced a significant insight. By introducing bound-

edly rational agents who occasionally make mistakes, a population now

had the potential to move between multiple equilibria. This persistent

noise gives the process life, allowing for the investigation of which equi-

libria the population is more likely to be near, independent of the initial

conditions.3

However when analysing a population subject to persistent noise, which

by its nature is continually moving between states,4 it is difficult to

obtain clear results of whereabouts it will be in the long run. KMRY

overcame this issue by producing all their results from analysis as the

noise level decreases to 0. Here, for a population of any size, a single

state is solely selected in the long run as noise vanishes.5

1By definition, no-one has an incentive to deviate.
2KMRY from here on.
3The introduction of boundedly rational agents also served as a step to address the

criticisms of analysis with hyperrational players, players of god like intelligence and endless
time to use it.

4Each state specifies a different combination of who is playing each strategy.
5The trend of vanishing noise analysis has continued. Early vanishing noise papers

including Ellsion(1993), Samuelson(1994), Begin and lipman(1996), Fernando and Vega-
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In this paper we also consider an alternative method, in which we allow

a constant level of noise, but let the population size increase without

limit. With non-vanishing noise a single state can never be selected as

the process is always in motion. Nevertheless, for any population size,

it is likely that process spends more time in one neighborhood of the

state space than another. Indeed, as we let the population size increase

without limit, we find a single neighborhood where the process spends

all of its time is selected.

I feel that as we are dealing with bounded rationality, the second method

makes more intuitive sense. As vanishing noise results require the source

of the dynamics to disappear, it seems that such results are only justified

if they reflect those that would be obtained under small non-vanishing

noise, with boundedly rational agents who actually do make mistakes

occasionally.

And so the primary aim of the paper is to assess whether the two meth-

ods agree on the long run location of the process. Specifically, in a large

population, is the state selected under vanishing noise always within the

neighborhood selected under small non-vanishing noise?

Surprisingly, in our main result we find that in some circumstances a

large population with a only a small amount of non-vanishing noise6

will never be where vanishing noise analysis tells us, the two meth-

ods yielding completely different results. The single state chosen under

vanishing noise can be very far from the neighborhood selected under

non-vanishing noise and an increasingly large population.

And so here we see vanishing noise analysis can present a very mislead-

Redondo(96) and Ellsion(2000) and more recently Kolstad(2003), Myatt and Wallace(2003),
Norman(2003a) and Hojman(2004).

6One mistake every one hundred periods in the example of section 3
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ing portrayal of an actual boundedly rational society. Consequently I

believe that there exists a dangerous trend in the literature to conduct

vanishing noise analysis alone, without any consideration of how signifi-

cantly their results may change under non-vanishing noise. Often there

are no simulations or calculations in the papers.

To explain the second aim of the paper and our choice of model, let us

consider the mobile phone market in the UK. The existence of high call

charges to networks other than your own, entails that each individual

prefers the whole population to be on their own network. Therefore the

most efficient market set-up would be one where just one network exists.

And indeed, in the homogenous population of KMRY we find that the

population is only stable when the entire population plays one strategy.

Yet interestingly, when we look at the actual mobile phone market we

continually observe many networks co-existing together. And there are

other important examples of such strategy co-existence. Most notably,

we often see many different political and religious beliefs existing within

a population,7 and this lack of co-ordination can sometimes produce se-

vere inefficiency. On a smaller scale, different members of a town will

often choose to invest in different public goods. Even towns which follow

two sports teams could well be better off with everyone supporting just

one.8

Although there are probably several reasons for strategy co-existence,

this paper wishes to explain such observations by allowing different peo-

ple to like different things. And so we may see one section of society

playing the strategy they prefer, while the rest of the population play a

7As an individual you often prefer more people in the population agreeing with your own
beliefs, than less.

8Some UK populations are known as either a football town, or a rugby town.
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different strategy which they favor. Therefore I choose a model which

has 2 types of players within a population, differing in their preferences

for two strategy choices. This increased heterogeneity creates a third

equilibrium, a co-existence equilibrium, where both strategies are played

in the population.

We find under both methods that the co-existence equilibria can easily

be the long-run location of the process. Furthermore, we find that when

a discrepancy between the two methods exists, it is the non-vanishing

noise approach that selects the co-existence equilibrium, vanishing noise

selecting one of the monomorphic equilibria instead. And so by consid-

ering a population that is both heterogenous and boundedly rational, we

reveal that observing several strategies together is possible, and indeed

likely. Therefore this type of equilibrium most likely plays a much larger

role in more realistic populations, than homogenous populations under

vanishing noise would suggest.

Analysis with non-vanishing noise is not unique to this paper. For exam-

ple Benaim and Weibull [2003a,b] also keep noise constant while taking

population size to infinity, as do Binmore and Samuelson(1997). Myatt

and Wallace(1998), and Beggs(2002) also devote some attention to the

concept. The most similar paper is probably that of Sandholm(2005),

which also looks at constant noise while taking population size to infin-

ity, showing that in a in homogenous population there can exist some

type of game where it is possible for constant noise results to differ from

those of vanishing noise. The quantal response literature (McKelvey and

Palfrey, 1995) has also given us the best experimental evidence that pos-

itive noise does matter. Separately, the co-existence of strategies exist in

Kolstad(2003) and Anwar(1999) to name two. In Norman(2003) the in-
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troduction of switching costs creates many stable points of co-existence,

although the vanishing noise analysis employed showed that in the long

run no time would be spent in these states.

Here we look to investigate a model with heterogeneity, co-existence

equilibria and positive noise, and the paper reads as follows. In Sec-

tion 2 we present the model of a boundedly rational population with

players of two conflicting types who have a choice of two strategies, with

similarities to Kolstad’s(2003) fluid interaction. They play a game of co-

ordination as in any period an agent’s payoff is monotonically increasing

in the number of other agents playing her chosen strategy.

In Section 3, we give a quick and clear illustration of our main results.

In Section 4, the framework of the analysis is set out. The selection

results pertaining to when the population spends all its time near the

co-existence equilibrium are obtained using the usual vanishing noise ap-

proach, then selection results are instead found with small non-vanishing

noise, and the population size being allowed to increase without limit.

The results are then compared, producing the main result.

Section 4 illustrates a sample of real calculations of boundedly rational

populations, showing that the larger the rate of individual mistakes, the

more likely the two strategies will co-exist. We also take a look at the

survival of minorities groups. Section 5 concludes.
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2 The Model

Let a single population of N players consist of two types of players, type

1 denoted T1 and type 2, T2. The game is essentially one of co-ordination

as in any period the more players in the population playing an agent’s

current strategy, the higher is that agent’s payoff. However, there are

two different types of players who receive different payoffs each period.

The payoff in any period t for a T1 agent playing strategy si, πsi
1 , is

given by

πs1
1 = β1(z(t)− 1)ρ (1)

πs2
1 = γ1(N − z(t)− 1)ρ (2)

where z(t) represents the number of agents playing s1 in period t and

ρ ε R+9. β1 > γ1 indicates that all T1 agents have the same preference

to co-ordinate on strategy 1 rather than 2.

The essential difference between T2 and T1 players is that T2 agents

prefer the population to co-ordinate by playing s2 rather than s1, while

T1 agents have the opposite preference.

And so we have it that the payoff for a T2 agent playing strategy si, πsi
2 ,

is given by

πs1
2 = β2(z(t)− 1)ρ (3)

πs2
2 = γ2(N − z(t)− 1)ρ (4)

where β2 < γ2.

9For most applications we would have ρ ε (0, 1] but we leave ρ > 1 open for generality.
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2.1 ρ = 1 and Pairwise Matching

Here we see that a special case of the model is the familiar idea of

pairwise patching, that in each period an agent has an equal chance of

playing a stage game with any other agent in the population.

While demonstrating this, let us consider an example. Competing cell

phone companies often have far higher charges for calls to other networks

than to calls to the same network, thus each call is a co-ordination

game. Consider a heterogenous world where T1 agents (person or firm)

prefer the network orange over T-mobile (perhaps due to differing sms

packages, etc), and T2 agents favor T-mobile. Then stage game between

the two is given by10

T1, T2 Orange T −mobile

Orange a, c e, f

T −mobile g, h b, d

where a > e, b > g, c > f, d > h indicates the co-ordination of the game

and a− g > b− e and c− h < d − f reveals the differences preferences

between the two types. Without loss of generality e, f, g and h can be

set to 0, and therefore the three stage games are

T1, T2 Or Tm

Or a, c 0, 0

Tm 0, 0 b, d

T1, T1 Or Tm

Or a, a 0, 0

Tm 0, 0 b, b

T2, T2 Or Tm

Or c, c 0, 0

Tm 0, 0 d, d

The matching process is one phone call each period to any other member

of the population (equally likely). The payoff represents the cheapness

of the call rate to the individual. Every period each agent will decide

whether to change his network or not depending on how many people

10There are two other equally important stage games, one between two T1 agents and
another between two T2 agents.
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are on each network and his preferences, experimenting on occasions.

Now, by setting ρ = 1, β1 = a
N−1 , β2 = c

N−1 , γ1 = b
N−1 , and γ2 = d

N−1

in equations 1 to 4, we have it that πsi
j becomes the average expected

payoff for a Tj agent playing strategy si for pairwise matching. And

therefore pairwise matching is just a special case of the general model.

2.2 ρ < 1: A Public Smoking Example

For a further example let s1 represent the choice of going to a smoking

area and let s2 represent going to a non-smoking area. Label T1 agents

as smokers, and T2 agents as non-smokers. Set ρ < 1 and for interest

consider smokers to be in the minority.

Consider in each period that two groups form within the population,

one containing all the people who choose to congregate in the smok-

ing area, the other containing those who choose not to. For instance

we could be in a familiar office setting where during daily breaks most

smoker types often congregate in a different area to non-smokers. Here

the co-ordination payoffs in equations 1 to 4 could represent the value

of forming and enjoying relationships with other members of the group.

The more people in your group the better it is for you, but as you are

unlikely to to talk to everyone ρ < 1 indicates that the value of having

3 members in your group rather than 2 exceeds that of acquiring an

extra 20th member. You do not interact with people in the other group

during breaks and so gain no payoff from them.

Each day an agent decides whether to convene in the smoking or non-

smoking area, depending on how many people were in which group yes-

terday and her preferences. Occasionally experimenting with a different

strategy.
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One question is how will employees take their breaks in the long run,

all in the non-smoking or smoking area, or will a co-existence of the two

groups prevail? Another question is whether the population’s level of

bounded rationality will effect the answer.

Alternatively, one could imagine the population to be the regular mem-

bers of a bar. And if a co-existence of smoking and non-smoking groups

is prevailing even though it is socially inferior, then there may well be

cause for a government body to step in and ban one of the strategies.

2.3 Players and the Stochastic Dynamics

The players chosen here are myopic in the sense that they believe the

state of play will be the same as the previous period, z(t−1), and so last

periods play is the only factor effecting a player’s decision this period.

Therefore a T1 agent’s best response this period is
s1 if z(t− 1) > 1

1+(
β1
γ1

)
1
ρ
N +

(
β1
γ1

)
1
ρ−1

(
β1
γ1

)
1
ρ +1

≡ pN + δ

s2 Otherwise

(5)

Note that p < 0.5 ∀ β1 > γ1.

And similarly a T2 agent’s best response this period is11.
s1 if z(t− 1) > 1

1+(
β2
γ2

)
1
ρ
N +

(
β2
γ2

)
1
ρ−1

(
β2
γ2

)
1
ρ +1

≡ qN + ζ

s2 Otherwise

(6)

11Note from the pairwise matching of section 2.1, with β1 = a
N−1 , β2 = c

N−1 , γ1 = b
N−1 ,

γ2 = d
N−1 , that p = 1

1+(
β1
γ1

)
1
ρ

= b
a+b is the mixed equilibrium of the T1, T2 stage game where

T2 agents play s1 with probability p.
And q = 1

1+(
β2
γ2

)
1
ρ

= d
c+d is the other mixed equilibrium where T1 agents play s1 with

probability q.
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where q > 0.5 ∀ β2 < γ2

We now continue by denoting N1 as the number of T1 agents in a

given population, and N2 as the number of T2 agents, such that N =

N1 + N2. Define the proportion of T1 agents in the population as

α = N1/N . In any period let z1(t) be the number of T1 agents play-

ing s1, and let z2(t) be the number of T2 agents playing s1 such that

z(t) = z1(t)+z2(t). As agents do not differentiate between other players

types z(t) = {0, 1, ..., N} can be seen to define the state of the process at

any time t. In each period every player is able to choose a best response

to last periods state of play.

There exists at least two stable points for the process, E1 where all

agents choose to play s1(z = 1)12 and E2 where all choose s2(z = 0).

Furthermore, for pN + δ < αN < qN + ζ, there exists a third stable

point of the process Em at z1 = αN and z2 = 0. Here all T1 agent’s best

response is to play s1 as they believe enough agents will join them to

make it worthwhile, while all T2 agents choose their preferred strategy

s2. Em is a steady state of co-existence of both strategies.13

We can now define the basins of attraction of the stable points of the

process. Firstly let the basin of attraction of Ei be denoted by Bi. Then

B2 is defined by any state z(t) ε {0, ..., [pN + δ]−}.14 At any point in B2

all agent’s best response is to play s2 next period. Similarly, Bm is given

by z(t) ε {[pN + δ]+ ..., [qN + ζ]−} and B1 by z(t) ε {[qN + ζ]+, ..., N}.

The state space Ø = {z1(t) = 0, ..., αN, z2(t) = 0, ..., (1− α)N} and the

basins of attraction can therefore be illustrated by

12Let z ≡ z(t).
13I will consider cases only where pN + δ < αN < qN + ζ holds, as other cases essentially

reduce to a homogenous population as in KMRY.
14[x]− is the largest integer below x, and [x]+ is the smallest integer above x, [x]− =

[x]+ − 1.
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z2=(1-α)N

BB22

EEmm

BB11z1+z2 =qN+ζ

z1+z2 =pN+δ

z1=0

z2=0
z1=αN

Figure 1: The State Space

Left alone the long run location of the process would depend only on

which basin it was in initially. Instead, an element of bounded ratio-

nality is introduced. As in KMRY, an agent will select a strategy other

than its best response with probability ε each period, I shall call such

an event a mutation. Such mutations could be due to small temporary

changes in circumstances for an individual. For instance, the smoking

area is too cold for you one day so you go inside, your favorite football

player is suspended and as a result you try a rugby game, or your mobile

phone bill was unexpectedly expensive and so you change networks.15

Now via a certain number of mutations, it’s possible for the process

to leave its initial basin, and any other (often referred to as a basin

jump). Indeed, the process is irreducible and aperiodic as it’s possible

to jump from any given state to any other state in one period, includ-

15This is my preferred interpretation. The more familiar story is that players experiment,
just make mistakes or dye with probability 2ε and are replaced.
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ing itself, and therefore the markov chain is ergodic. Perhaps the best

way to visualize the markov chain is given by the simplified state space

of z(t) = {0, 1, ..., N} illustrated below, the larger arrows representing

basin jumps, the smaller showing the flow of the basins.

zt=0 pN qNαN N

Figure 2: The Simplified State Space

And so we have a non-linear stochastic difference equation

z(t + 1) = B(z(t)) + q(t)− r(t)

given q(t) ∼ Bin(N − B(z(t)), ε), r(t) ∼ Bin(B(z(t)), ε) and where

B(z(t)) gives z(t + 1) when all agents (of both types) choose their best

response to z(t) last period without mutation. Thus we have a markov

matrix Γε with transition probabilities given by Γmn = P(z(t + 1) =

n|z(t) = m).

The long run behavior of the Markov chain is given by the stationary

equations µεΓε = µε, the solution µε is stationary for fixed Γε. Indeed,

for an ergodic Markov chain µε will be unique and therefore indepen-

dent of the initial conditions. µε = (µ1, µ2, ..., µN ) can be seen as the

proportion of time society spends in each state z = 1, 2, ..., N .
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Lemma 1 The Markov chain on the finite state space Z ={0,...N} de-

fined by Γmn is ergodic . It therefore has a unique invariant distribution,

µε.

Proof. This is a standard result. For example see Grimett and Stirzaker,

2001.

2.4 Welfare

Before continuing let us take the opportunity to discuss social welfare

in different equilibria. Welfare in the co-existence equilibrium is often

lower than the two pure equilibria as here the conflict between the two

groups diminishes the network effect. Even though each agent type is

playing their preferred strategy, they fail to co-ordinate with a whole

section of society.

As the process is always dynamic when noise is allowed to stay constant,

it is difficult to make precise statements on the welfare of the society in

certain neighborhoods. However, for small values of noise we can say

something of the total social welfare in each of the three stable states of

the population.

Lemma 2 Let ρ = 1 and ε be small. Then,

a) for an equally distributed population such that α = 0.5, if β1 ' γ2

then Em is always the worst of the three equilibria in terms of total

social welfare,

and,

b) for any value of α, β1 and γ2, Em can never be the equilibria which

maximises total social welfare.

Proof. Given in the Appendix. �
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3 An Illustration of the Results

Before we dive into the analysis, we present some calculations which

demonstrate the stark difference in conclusions that vanishing and non-

vanishing noise analysis can yield.

Consider a population with 50 T1 and 50 T2 players such that α = 1
2 ,

who play the game below with the pairwise matching of section 2.1.16

T1, T2 s1 s2

s1 8, 7 4, 0

s2 0, 4 7, 8

The graph below shows that vanishing noise analysis concludes that the

population will spend none of its time in the basin of attraction of Em.

lim
ε 0

Figure 3: Time spent in the basin of Em as noise vanishes

However, one can easily see from the graph that at an extremely small

mutation rate of one in a hundred periods (ε = 0.01), the population in

16Note that the following results would be identical if instead the example was with ρ =
0.5, β1 = γ2 = 1.63 and β2 = γ1 = 1.
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fact spends over 75% of its time in Em’s basin of attraction.

And so vanishing noise can portray a completely misleading picture of

where a slightly noisy population will be in the long run.

In order to obtain clear results with positive levels of noise, we allow

the population size to increase without limit. In fact, a large population

with a mutation rate of one in a hundred periods will spend almost all

of its time in the basin of Em.17

 

Figure 4: Time spent in the basin of Em as the population increases, ε = 0.01.

And in terms of social welfare, this is the worst neighborhood for the

population to be in.

17Note that in the graph below the large jumps in πm as N increases are due to the
discontinuous [x]+ and [x]− functions which appear in all the markov probabilities. Also
note the graph contains some non-integer values of N are not relevant, but do do little harm
in illustrating the nature of the dynamics.
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4 Analysis

As we will be dealing with positive levels of noise, the process will not

converge to a single point. And so we divide the state space into three

neighborhoods defined by the three basins of attraction, B2, Bm and

B1. Indeed, under the best reply dynamics, at any state in a particular

basin of attraction all agents of a particular type have the same best

response next period. Therefore the number of mutations required to

leave a basin, and the probability of this occurring, is the same at any

state in that basin.

We can now consider just three states, V = {B1, Bm, B2}, and let V (t)

indicate which basin the population is in at time t. By defining the prob-

ability of leaving any state in basin i and entering any state in basin j

by pij = P(V (t + 1) = Bj |V (t) = Bi), we are able to simplify the whole

state space into the three state markov chain below.

BB22 EEmm BB11

p2m p1m

pm2 pm1

p21

p12

pmm

p11p22

Figure 5: The Three State Markov Chain

Therefore we have a new ergodic markov chain whose long run be-

havior is given by the stationary equations πεP ε = πε, where P ε is

the transition matrix containing the nine transition probabilities of pij ,

and πε is the unique solution for fixed P ε. Here πε = (π1, πm, π2) can

17



be seen as the proportion of time society spends in each neighborhood

V = B1, Bm, B2.

The minimum number of mutations required to leave the basin of E2

is [pN ]+, no matter which state of B2 the process is in. Therefore the

probability of escaping B2 and entering Bm in any period is the simply

the probability having between [pN ]+ and [qN ]− mutations, and so

p2m =
[qN+ζ]−∑

i=[pN+δ]+

(i N) εi (1− ε)N−i

Similarly, the probability of escaping B1 and entering Bm in any period

requires between N − [qN ]− and N − [pN ]+ mutations, and so

p1m =
[N−[pN+δ]+∑

i=N−[qN+ζ]−

(i N) εi (1− ε)N−i

Escaping from Em is a more complicate affair. Two mutations from

different types effectively cancel each other out as they will have no effect

on the next period’s state of play (there is no change in z). Therefore

the process requires a net number of mutations in one direction to make

such a jump.18 And so the probability of escaping Bm and entering B1

is given by

pm1 =
N∑

j=N−[qN+ζ]+

min{j,N−i}∑
k=max{j−αN,0}

(αN, αN + k − j)((1− α)N − k N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k

The remaining transition probabilities, p11, p12, p22, p21, pmm, and pm2

are given in the appendix.

18Consider that a minimum of 20 mutations are required to leave Bm and enter B1. These
20 mutations must all be T2 agents switching from their best response s2 to s1. Then, as each
T1 mutation ’cancels out’ a T2 mutation, the difference in the number T2 and T1 mutations
must be at least 20 for the process to jump from Bm to B1.
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The time spent in the neighborhood Bm can be obtained from the tran-

sition probabilities alone.

Lemma 3

πm =
1

1 +
pm2
p2m

(
p12
p1m

+1)+
p21
p2m

pm1
p1m

p12
p1m

+1+
p21
p2m

+
pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

Proof. See the appendix. �

We divide the state space into neighborhoods as it allows the opportunity

to obtain results with vanishing and non-vanishing non-vanishing noise.

To achieve such results we now define the two most important terms of

the paper.

For analysis the dynamics under vanishing noise we have the familiar

notion of stochastic stability.

Definition 1 An equilibrium Ei is defined as being stochastically stable

if 19

lim
ε→0

πi > 0

In order to investigate the dynamics under non-vanishing noise we in-

troduce popular stability.

Definition 2 An equilibrium Ei is defined as being popularly stable at

noise level ε if there exists ε such that

lim
N→∞

πm > 0

As noise is not allowed to vanish for popular stability, the process is al-

ways dynamic and therefore no single state is selected as the population

increases without limit. Instead an equilibrium’s basin of attraction is

19In fact, for vanishing noise all the time is spent at the single state z = αN . I have used
πi here for a clearer comparison of the two limiting techniques. Also, the usual definition
stochastic stability states limε→0 πz > 0, for simplicity i wish to focus only on when all the
time is spent in one area.
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selected as we increase the population size.

The main aim of this paper is to investigate whether analysis of stochas-

tic stability consistently yields the same conclusions as popular stability

when ε is small.20 In order to test this we focus on the conditions for

which the long run location of the process is near Em, for both limiting

techniques.

We begin with the simpler case of stochastic stability.

Proposition 1 Under vanishing noise, Em will be stochastically stable

if and only if its basin Bm occupies at over half the markov space.

limε→0 πm > 0 iff p ≤ α
2 and q ≥ 1+α

2 .

Analysis under vanishing noise can be seen as simply counting and com-

paring the number of mutations needed to escape each basin. And so

in order for Em to be stochastically stable it must take more mutations

to escape Bm(to B1 or B2) than any other adjacent basin escape. Let

the transition (jump) from basin i into basin j be denoted by B−→
ij

. Then

consider a scenario where the basin escape B−→
m1

requires just one less

mutation than B−→
1m

, for some N . Then in the limit of ε → 0, the ’cost’

of this one extra mutation becomes infinitely large, overwhelming any

other forces that could be in effect and ensuring that Em is stochasti-

cally unstable. I shall refer to this force as the basin size effect. When

obtaining results with vanishing noise the basin size effect is all that

matters.

This can be seen by the illustration of Proposition 1, the shaded area

representing the range of values that both p and q must take in order

for Em to be stochastically stable.

20The question of what constitutes small noise has no simple answer. With further exper-

imental data we could perhaps replace the word small with realistic.
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2

(1+α)N
2

p q

And the basin size effect remains a very powerful force when we examine

popular stability. To see this consider that the basin escape B−→
m1

requires

3 less mutations than B−→
1m

for some Ñ . Then at twice this population

B−→
m1

now requires 6 less mutations than B−→
1m

. 24 less at 4Ñ , and so

on. Therefore in a boundedly rational population, the magnitude of the

basin size effect rises linearly with N. And so it would seem that basin

sizes again will be all that determines equilibrium selection.

However, there are other forces at work which are overwhelmed under

vanishing noise, but have the ability under non-vanishing noise to alter

selection against the basin size effect.

The first I shall call the combination effect. At any state in B2 all N

agents could experiment with s1, while in Bm there are only αN agents

able to experiment with s2. This contributes towards there being many

more combinations of mutations available for a B−→
2m

jump than B−→
m2

.

And as N rises this combinational difference also increases. In fact, this

effect alone results in different popular and stochastic stability results.

It is not hard to see that when a difference in equilibrium selection does

occur it is popular stability that favors Em.

The second effect I will call the dis-coordination effect. This is the effect,

when in Bm only, of simultaneous mutations from both types canceling

each other out, tending to make any Bm escape less probable at higher

levels of noise. As N increases, the possible number of opposing muta-
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tions to any jump from Bm also increases. Again this effect strengthens

Em under small non-vanishing noise, and has the potential to change

selection away from the stochastically stable equilibrium.

However, when trying to obtain popular stability results two main prob-

lems appear. Firstly, when analysing with vanishing noise, one may con-

sider only the basin jumps requiring the minimum number of mutations,

as all other possible jumps become negligible in the limit of ε → 0. But

under non-vanishing noise in the limit of N → ∞, the probability of

other possible jumps do not become negligible and so need to be in-

cluded in the analysis. For instance, when analyzing the probability of

jumping from B−→
1m

, one must consider the probability of jumping from

B1 to any state in Bm. As there exists many states in Bm, the number

increasing in N, the calculation and analysis of basin escape probabilities

can be complex.

The second main problem is that the positive probability of simultane-

ous mutations from both types complicates the basin escape probabilities

from Bm further. These are not straight binomial probabilities, but the

net of two binomials.

Such complications make the derivation of precise critical values (p, q, α

and ε) for particular equilibrium selection under positive noise a complex

task. However using the following lemma and proposition something can

be said.

Lemma 4 Let Pr(Sn > r) =
∑∞

v=0 b(r + v; v, l) where b(r + v; v, l)

is the binomial probability of exactly r+v successes from n trials with l

being the probability of a success. Then

P (Sn ≥ r) ≤ b(r;n, l) r(1−l)
r−nl ∀ l < r.
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Proof. This is a standard result. For example see Feller p.151. �

Lemma 4 allows us to outline the general conditions for Em to be pop-

ularly stable.

Proposition 2 limN→∞ πm → 1 if and only if
limN→∞

pm2

p2m
= 0 and

limN→∞
pm1

p1m
= 0 ∀ ε < min(p, 1− q).

Proof. See the appendix. �

Proposition 2 essentially explains that as p12 and p21 are relatively neg-

ligible, if the inflows into Bm progressively dominate outflows as the

population increases, then the process will spend all its time in Bm.

We can now do more than just look at stochastic stability as we are able

to determine a condition for the co-existence equilibrium to be popularly

stable.

Proposition 3 If

x(α, p, ε) =
ε2p−α(1− ε)1−2p(α− p)α−p

αα(1− p)(1−p)
≥ 1 and

y(α, q, ε) =
ε2q−(1+α)(1− ε)1−2q(q − α)q−α

(1− α)(1−α)qq
≥ 1

then the time spent in Bm will be greater than that spent in B1 or B2

for N > Ñ , p, q, α and ε > 0.

For increasingly large N, if the two above conditions are satisfied then

limN→∞ πm = 1

and so Em is popularly stable for p, q, α and noise level ε.

Proof. See Appendix �

It should be understood that x and y are not the exact critical points

determining equilibrium selection at noise level ε, for some x < 0 and y <

0 it is still very possible that limN→∞ πm → 1. Analysis in Proposition
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3 excludes the dis-coordination effect for tractability, and so does not

capture the full strength of the co-existence equilibrium under small

positive noise in an increasing population.

However Proposition 3 does allow us to establish our main result, that

results of a process where noise vanishes completely can say very little

of a population whose bounded rationality is innate.

Consider again the example in section 3 where p = 3
11 = 0.2727̇ and

q = 8
11 = 0.7272̇.

T1, T2 s1 s2

s1 8, 7 4, 0

s2 0, 4 7, 8

Here Bm contains less than half the markov space as both p > α
2 = 0.25

and q < 1+α
2 = 0.75, from Proposition 2 we see that Em is stochastically

unstable. The calculations concur.

lim
ε 0

However, with a small non-vanishing experimentation rate of one in
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a 100 periods, ε = 0.01, we have it that

x(α, p, ε) =
0.012.(0.273)−0.5(1− 0.01)1−2.(0.273)(0.5− 0.273)0.5−0.273

0.50.5(1− 0.273)(1−0.273)

= y(α, q, ε) = 0.0276 > 1

and from Proposition we see that Em is popularly stable for ε = 0.01,

and so the population will spend all its time in Bm as N → ∞. The

calculations agree.

 

Indeed, there exists a range of preferences for a large population where

vanishing noise and small non-vanishing noise yield completely different

results.

popularly

Theorem

For each ε ε (0,min(α
2 , 1+α

2 )) there exists a range of preferences

corresponding to p ε [α
2 , α

2 + τ(ε)) and q ε [1+α
2 , 1+α

2 − τ(ε)), τ(ε) > 0,

such that 
limε→0 πm = 0 ∀ α, N, but

limN→∞ πm = 1 ∀ α.

This theorem can be seen on the 1-dimensional diagram below, where
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the shaded region indicates for a given ε > 0 the range of p and q where

the two limiting techniques give completely different results.

zt=0 αN NpN qN

Em
stochastically

unstable

Em
ε−boundedly

stable

Corollary In the range p ε [α
2 , α

2 + τ(ε)) and q ε [1+α
2 , 1+α

2 − τ(ε)) , it

is always popular stability that favors Em as the long run equilibrium

of the process, where as the stochastically stable state selects either E1

or E2.

Proof. As τ(ε) > 0, this follows straight from the theorem. �.

And so the technique of vanishing noise analysis does not show the

true potential for boundedly rational populations to be caught in the

neighborhood of the co-existence equilibria, often the worst place to be

for the society to be. And so polymorphic states may play a much larger

role than vanishing noise analysis would let us believe.
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5 Calculations

In this section we examine a sample of calculations with ρ = 0.5. As will

be seen, the more noisy a population becomes, the smaller Bm needs to

be in order for the process to spend all its time there in a large popu-

lation. Furthermore, we investigate a minority group who have strong

preferences for their chosen strategy. In terms of social welfare, Em is

the worst equilibria for the society in every example.

Consider a population where there exists a less intense difference in T1

and T2’s preferences than in section 3 such that β1 = γ2 = 1.58 and

β2 = γ1 = 1, giving p = 0.286 and q = 0.714.

Now at the experimentation rate of one per hundred periods, ε = 0.01,

α = 0.5 and N increasing we see that for large N the process will in fact

spend none of its time in the basin of Em.

Note that x(1
2 , 0.286, 0.01) = y(1

2 , 0.714, 0.01) = −0.0764 < 0.
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However, at a slightly larger mutation rate of 1 in 25, ε = 0.04, the

population will again spend all of its time near Em as the population

grows large.

Here x(1
2 , 0.286, 0.01) = y(1

2 , 0.714, 0.01) = 0.0094 > 0.

 

But as the difference of T1 and T2’s preferences become less intense still

with β1 = γ2 = 1.53 and β2 = γ1 = 1, with non-vanishing noise ε = 0.04,

again the process spends almost none of its time in the basin of Em for

large N.
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Indeed the trend continues as when noise increases to ε = 0.07, Em

once more becomes the long run location of the population.

 

Consider that you are an observer, perhaps a member of a governing

body who has no knowledge of the preferences of the population. Then

one interpretation of the above trend is that the more noisy a population

is, the more likely we are to find a large population spending nearly all

of its time in a state of inefficient strategy co-existence.
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5.1 Minority groups

So far our examples have focused upon an equal number of T1 and T2

agents with identically asymmetric preferences, but the model can easily

lend itself to the analysis of minority groups. We again find that vanish-

ing noise results can be a misleading portrayal of a boundedly rational

population.

Consider twice as many T2 agents than T1 agents in a population of

90, but allow T1 agents to have a stronger preference for their favoured

strategy such that β1 = 1.83, γ1 = 1 and γ2 = 1.3, β1 = 1.

 

where πm is given by the red line and π2 by the green.

We see that results from vanishing noise analysis convey that the mi-

nority group’s strong preferences have no influence over the state of the

population, if they were indifferent between s1 and s2 they would be in

the same position. However, in a population with some positive noise

the minority group does have some sway in the population. At a small

noise level of 0.02 we see that the population will spend almost all of its

time near Em, a significantly better location for the minority to be in.
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6 Conclusions

This paper is motivated by the belief that conclusions drawn from van-

ishing noise results can often be surprisingly misleading when used to

determine the nature of a truly boundedly rational population, even

when this bounded rationality is small.

I investigate a typical KMRY type model with a population playing a

2x2 co-ordination game. The introduction of slight player heterogeneity

creates a further steady state of co-existence of the two strategies.

By using a large population of agents who play a best response each

period with probability 1-ε, I have been able to obtain results from both

vanishing and non-vanishing noise techniques, and can therefore com-

pare the two.

I find that the two do not yield the same results. Indeed, there exists

a range of population preferences where the two methods produce com-

pletely different conclusions. Vanishing noise analysis telling us that the

population will spend all of its time co-ordinating on one strategy, while

under small non-vanishing noise the population will in fact always be

close to the co-existence steady state.

The reason for the startling difference between the methods is that the

limiting procedure of vanishing noise is somewhat overpowering. There

are important forces at work in the population dynamics which are sim-

ply overwhelmed and ignored when noise completely vanishes. However

these forces can be of influence when noise is small, even when the pop-

ulation is large, and this is why we observe the disparity in the results

of the two techniques.

Given that there exists such a discrepancy, this paper seeks to highlight a

dangerous trend in the past literature to conduct vanishing noise analysis
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alone, with little consideration of how significantly results would change

with just a small amount of non-vanishing noise. As more and more

studies emphasize the irrationality of their human subjects, perhaps the

focus in the literature should be turning to truly noisy populations.

Appendix

Proof of Lemma 1:

At E1 total social welfare(sw) is given by αNβ1(N−1)+(1−α)Nγ1(N−

1).

At Em, z = αN , sw = αNβ1(αN − 1) + (1− α)Nγ1((1− α)N − 1).

Therefore by setting α1 = γ2 we have it that Esw
m > Esw

1 iff 2γ2α
2 +γ2−

3γ2α− γ1 + γ1α > 0.

a) At α = 0.5, Esw
m − Esw

1 = −0.5 γ1 < 0 such that Esw
1 > Esw

m for all

γ1, β2 where β1 ' γ1 and α = 0.5.

Similarly at α = 0.5, Esw
m − Esw

2 = −0.5 β2 < 0 such that Esw
2 > Esw

m

for all γ1, β2 where β1 ' γ1 and α = 0.5.

b) For any α, β1 and γ2 let γ1 = β2 = 0.

Then Esw
m > Esw

1 iff α < d
a+d .

Similarly Esw
m > Esw

2 iff α > d
a+d .

Therefore there will always exist another equilibrium which is superior

to Em in terms of total social welfare. �

Proof of Lemma 3

The stationary equations of the 3 state markov process are given by

1. π1 = π1p11 + π2p21 + πmpm1; 2. π2 = π1p12 + π2p22 + πmpm2;

3. πm = π1p1m + π2p2m + πmpmm; 4. π1 + π2 + πm = 1 ,

and also note,
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5. p11 + p12 + p1m = 1, 6. p21 + p22 + p2m = 1, 7. pm1 + pm2 + pmm = 1.

1 ⇒ π1(1− p11) = π2p21 + πmpm1 , and

2 ⇒ π2 = π1p12+πmpM2
1−p22

.

Therefore 1 and 2⇒ π1 = [
pm1(1−p22)

p21
+pm2

(1−p11)(1−p22)
p21

−p12

], π2 = [
pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

] πm,

from substituting in 5 and 6 and rearranging.

Symmetrically we have π2 = [
pm2
p2m

(
p12
p1m

+1)+
p21
p2m

pm1
p1m

p12
p1m

+1+
p21
p2m

]πM

From substituting both expressions into 4 we obtain our result. �

Proof of Proposition 1

First consider pm2

p2m
.

pm2 =
[pN+δ]−∑

j=0

min{j,N−i}∑
k=max{j−αN,0}

(αN, αN − [pN + δ]−)((1− α)N − k, N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k

= εαN−[pN+δ]− [(αN, αN − [pN + δ]−(1− ε)[pN+δ]−(1− ε)(1−α)N +
[pN+δ]−∑

j=1

j∑
k=0

(αN, αN − [pN + δ]−)((1− α)N − k, N) εαN+k−j

(1− ε)j−kεk (1− ε)N−αN−k

+
j∑

k=1

(αN, αN − [pN + δ]−)((1− α)N − k, N) εαN+k−j

(1− ε)j−k εk (1− ε)N−αN−k

≡ εαN−[pN+δ]− [ρf(1− ε) + ρf(ε)]
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where ρ is some function independent of ε, and,

p2m =
[qN+ζ]−∑

i=[pN+δ]+

(i N) εi (1− ε)N−i

= ε[pN+δ]+ [(N, [pN + δ]+)(1− ε)N−[pN+δ]+ +
[qN+ζ]−∑

i=[pN+δ]++1

(i N) εi (1− ε)N−i

≡ ε[pN+δ]+ [ρf(1− ε) + ρ(ε)].

And so,

pm2

p2m
=

εαN−[pN+δ]− [ρf(1− ε) + ρf(varε)]
ε[pN+δ]+ [ρf(1− ε) + ρf(ε)]

= ε(α−2p)N−2δ+(γ1−γ2) [ρf(1− ε) + ρf(ε)]
[ρf(1− ε) + ρf(ε)]

by letting [x]− = x− γ1 and [x]+ = x + γ2 where γ1, γ2 < 1 for any x.

Therefore

lim
ε→0

pm2

p2m
=


0 if p < α

2 −
δ+(γ1−γ2)

N

∞ if p > α
2 −

δ+(γ1−γ2)
N

which essentially corresponds to

lim
ε→0

pm2

p2m
=


0 if p < α

2

∞ if p > α
2 .

Similarly we have

lim
ε→0

pm1

p1m
=


0 if q > 1+α

2

∞ if q < 1+α
2 .

Therefore as limε→0
p21

p2m
= 0 and limε→0

p12

p1m
= 0 ∀ N , from lemma 3 we

have it that limε→0 πm = 1 requires p < α
2 and q > 1+α

2
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Proof of Proposition 2

Recall from lemma 1 that

πM = 1

1+

pM1
p1M

(
p21
p2M

+1)+
p12
p1M

pM2
p2M

p21
p2M

+1+
p12
p1M

+

pM2
p2M

(
p12
p1M

+1)+
p21
p2M

pM1
p1M

p12
p1M

+1+
p21
p2M

≡ 1
1+π1+π2

.

First note that p21

p2M
< c ∀ ε < p, ε < 1 − q, α and N, where c is some

constant.

To see this first define

pj
2m = ([pN + δ]+ + j, N) ε[pN+δ]++j (1− ε)N−[pN+δ]++j and

pj
21 = ([qN + ζ]+ + j, N) ε[qN+ζ]++j (1− ε)N−[qN+ζ]+−j

and then consider

p21

p2m
= p0

21+p1
21+...+p

N−[qn+ζ]+
21

p0
2m+p1

2m+...+p
[qn+ζ]−−[pn+δ]+
2m

<
p0
21[qN+ζ]+(1−ε)

p0
2m[qN+ζ]−Nε

using lemma 1.

As limN→∞
[qN+ζ]+(1−ε)
[qN+ζ]−Nε = q(1−ε)

q−ε < c1 and p0
21

p0
2m

< 1 ∀ ε < p,

we have it that p21

p2M
< c ∀ ε < p. And symmetrically p21

p2M
< ć ∀ ε < p.

Therefore if pm2

p2m
→ 0 and pm1

p1m
→ 0 as N →∞, then

limN→∞ π1 = limN→∞

pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

= 0+0c+0ć
0+1+0 = 0.

Similarly limN→∞ π2 = 0.

And therefore limN→∞ πm = 1
1+0+0 = 1. �

Proof of Proposition 3

First consider when p2m

pm2
is rising with N.

By considering that the probability of a basin escape is at all times

higher under a constraint that no opposing T2 mutations can occur in a
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period, we can deduce an upper bound

pm2 =
[pN+δ]−∑

j=0

min{j,N−i}∑
k=max{j−αN,0}

(αN, αN − [pN + δ]−)((1− α)N − k, N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k

<

[pN+δ]−∑
j=0

(αN, αN − [pN + δ]− + j)εαN−[pN+δ]−+j(1− ε)[pN+δ]−−j

< (αN, αN − [pN + δ]−)εαN−[pN+δ]−(1− ε)[pN+δ]− [pN + δ]−(1− ε)
[pN + δ]− −Nε

∀ ε, p, α and N,

the third part coming from lemma 4.

Also,

p2m =
[pN+δ]−∑

j=0

(N, [pN + δ]+ + j)ε[pN+δ]−+j(1− ε)N−[pN+δ]−−j

> (N, [pN + δ]+)εαN−[pN+δ]−(1− ε)[pN+δ]−∀ ε, p, α and N.

And so,

p2m

pm2
>

(N, [pN + δ]+)ε[pN+δ]−(1− ε)N−[pN+δ]−

(αN, αN − [pN + δ]−)εαN−[pN+δ]−(1− ε)[pN+δ]− [pN+δ]−(1−ε)
[pN+δ]−−Nε

∀ ε, p, α and N.

And so when the right-hand side of this inequality, label it λ, increases

without bound as N → ∞, then so must p2m

pm2
→ ∞ as N → ∞. And

so we now investigate under which parameter values the right hand side

increases without bound as N rises.
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Now,

λ =
(N, [pN + δ]+)ε[pN+δ]+(1− ε)N−[pN+δ]+

(αN, αN − [pN + δ]−)εαN−[pN+δ]−(1− ε)[pN+δ]− [pN+δ]−(1−ε)
[pN+δ]−−Nε

= ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)![pN + δ]−!
(αN)!(N − [pN + δ]+]![pN + δ]+!

[pN + δ]− −Nε

[pN + δ]−(1− ε)

= ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)!
(αN)![N − pN + δ]+]!([pN + δ]+ + 1)

[pN + δ]− −Nε

[pN + δ]−(1− ε)

as [x]−!
[x]+! = 1

[x]++1 .

And

λ = ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)!(N − [pN + δ]−)
(αN)![N − pN + δ]−]!([pN + δ]+ + 1)

[pN + δ]− −Nε

[pN + δ]−(1− ε)

as (x− [k]+)! = (x− [k]− − 1)! = (x−[k]−)!
x−[k]−

.

Using [x]− = x − γ1 and [x]+ = x + γ2 where γ1, γ2 < 1 for any x, and

taking natural logarithms of both sides we obtain

lnλ = ((2p− α)N − 2δ + γ1 − γ2) ln ε + ((1− 2p)N − 2δ + γ1 − γ2) ln(1− ε)

+ lnN !− ln(αN)! + ln(N − pN + δ − γ1)! + ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1

+ ln(αN − pN + δ − γ1)! + ln
(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
.

As we shall be taking the limit of N → ∞, we are able to make use of

stirling’s formula which states

lim
x→∞

lnx!
x lnx− x

= 1
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Substituting this in gives

lnλ = ((2p− α)N − 2δ + γ1 − γ2) ln ε + ((1− 2p)N − 2δ + γ1 − γ2) ln(1− ε)

+N(lnN − 1) + (αN − pN + δ − γ1)(ln(αN − pN + δ − γ1)− 1) +

ln
N − pN + δ − γ1

pN + δ + γ2 + 1
− αN ln(αN − 1)−

(N − pN + δ − γ1) ln((N − pN + δ − γ1)− 1) + ln
(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
.

Now implementing

ln(x + ξ) = lnx +
ξ

x
− ξ2

2x2
+

ξ3

3x3
− ...

gives

λ = (2p− α)N ln ε + (1− 2p)N ln(1− ε)− αN lnα− (1− p)N ln(1− p)

+(α− p)N ln(α− p) + N lnN + (α− p)N lnN − αN lnN − (1− p)N lnN

−N − (1− p)N + (α− p)N + (γ1 − 2δ − γ2) ln ε + (γ1 − 2δ − γ2) ln(1− ε)

−(1− p)N(
δ − γ1

N
+

(δ − γ1)2

N2
+ ...) + (α− p)N(

δ − γ1

N
− (δ − γ1)2

N2
+ ...)

+ ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
+ γ1

or,

λ = ln[
ε2p−α(1− ε)1−2p(1− p)(1−p)

(α− p)α−pαα
]N + (γ1 − 2δ − γ2) ln ε + (γ1 − 2δ − γ2) ln(1− ε)

−(1− p)(δ − γ1 −
(δ − γ1)2

N
+ ...) + (α− p)(δ − γ1 −

(δ − γ1)2

N
+ ...)

+ ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
+ γ1

In the limit as N →∞ we have it that

ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
→ ln

(1− p)
p

+ ln
(p− ε)
p(1− ε)

< c2.

And so limN→∞ λ →∞, and therefore limN→∞
p2m

pm2
→∞, if and only if
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ln[ ε2p−α(1−ε)1−2p(α−p)α−p

αα(1−p)(1−p) ] > 0.

Symmetrical analysis yields that if

ln[ ε2q−(1+α)(1−ε)1−2q(q−α)q−α

(1−α)(1−α)qq ] > 0 then,

limN→∞
p1m

pm1
→∞.

And so from Proposition 2, if both the above conditions are satisfied

then limN→∞ πm → 1. �

Proof of Theorem

To prove the theorem first consider the following lemma.

Lemma 5 At p = α
2 and q = 1+α

2 , limN→∞ πm = 1 ∀ α and 0 < ε ≤

min(α
2 , 1+α

2 ).

Proof.

First let us consider x(α, p, ε) from Proposition 3.

At p = α
2 , we have it that x(α, α

2 , ε) = α
2 lnα

2 − αlnα − (1 − α
2 )ln(1 −

α
2 ) + (1− α)ln(1− ε)

= −α
2 ln2α− (1− α

2 )ln(1− α
2 ) + (1− α)ln(1− ε).

Let ε = α
2 for each α, then we have

x(α, α
2 , α

2 ) = −α
2 ln2α− α

2 ln(1− α
2 ) = −α

2 ln(2α− α2) > 0 ∀ α ε (0, 1).

And as ∂x(α, α
2

,ε)

∂ε < 0 we have it that x(α, α
2 , ε) > 0 ∀ ε ≤ α

2 .

Symmetrically, at q = 1+α
2 , y(α, 1+α

2 , ε) > 0 for any ε < 1+α
2 .

Therefore x(α, α
2 , ε) > 0 and y(α, 1+α

2 , ε) > 0 ∀ ε < min(α
2 , 1+α

2 ), and

by Proposition 3 we are done.

Now we can prove the theorem.

Proposition 2 shows that limε→0 πm = 0 ∀ α, N for any p > α
2 and/or

q < 1+α
2 .
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Now consider limN→∞ πm = 1 and x(α, p, ε).

Let α = 2p
k and consider k ε [1, 2) such that α ε (p, 2p ].

Fix p and consider α varying.

For each p fix ε at some ε ε (0,min(p, 1−2p
2 )). 21

Then,

x(2p
k , p, ε) = 2p(1 − k−1)lnε + (1 − 2p)ln(1 − ε) + (2p

k − p)ln(2p
k − p) −

2p
k ln2p

k − (1− p)ln(1− p). and so,
∂x( 2p

k
,p,ε)

∂k = 2p
k2 lnε− 2p

k2 ln(2p
k −p)− 2p

k2 + 2p
k2 ln2p

k −−
2p
k2 = 2p

k2 [lnε− ln(2p
k −

p) + ln2p
k ]

which is continuous ∀ k ε [1, 2) provided ε > 0.

At k = 1, ∂x( 2p
k

,p,ε)

∂k = 2p[ln2ε] > −∞ ∀ ε > 0.

From lemma 5 we have x(2p
k , p, ε) > 0 at k = 1, therefore for each ε

there must exist some range of k > 1, τ(ε), where x is positive. I.E,

there exists some range of p ε [α
2 , α

2 + τ(ε)] such that x > 0.

Symmetrical analysis gives y > 0 for some range of at least q ε [1+α
2 −

τ(ε), 1+α
2 ] and from Proposition 3 we are done.�

21This comes from ε ≤ min(min(2p, 1−2p
2 ),min(p, 1−p

2 ))
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The other markov probabilities are given by:

p11 =
N−[qN+ζ]+∑

i=0

(i N) εi (1− ε)N−i.

p12 =
N∑

i=N−[pN+δ]−

(i N)εi (1− ε)N−i

p22 =
[pN+δ]−∑

i=0

(i N) εi (1− ε)N−i.

p2m =
[qN+ζ]−∑

i=[pN+δ]+

(i N) εi (1− ε)N−i.

pmm =
j=[qN+ζ]−∑
j=[pN+δ]+

min{j,N−i}∑
k=max{j−αN,0}

(αN, αN + k − j)((1− α)N − k N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k.

pm2 =
αN∑

j=αN−[pN+δ]−

min{j,N−i}∑
k=max{j−αN,0}

(αN, αN + k − j)((1− α)N − k N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k.
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