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Abstract

This paper proposes the panel-based mean group tests for the null of stationarity
against the alternative of unit roots in the presence of both heterogeneity across cross-
section units and serial correlation across time periods. Using both sequential and joint
asymptotic analyses the proposed test statistic is shown to be distributed as standard
normal under the null for large N (number of groups) and large T (number of time
periods).
Monte Carlo results support the use of join asymptotic limits (under further condi-

tion that N/T → 0) as a guide to finite sample performance, but also clearly indicate
that the power of our suggested panel-based test is substantially higher than that of
the single time series-based test.
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1 Introduction

In recent years there has been an upsurge in the availability and use of panel data sets where
both the number of cross sectional panel units (N) and the number of time series observations
(T ) are very large. For example Summers and Heston’s (1991) large multi-country panel data
has been and still is the focus of much empirical work in the area of macroeconomic growth.
Furthermore, as time progresses, micro panel data sets such as the British Household Panel
Survey (BHPS), where T is not currently so large, are being updated to incorporate new
time series observations as they become available. It is now recognised that when used in
an appropriately rigorous fashion large panels can be hugely informative about the unknown
parameters of economic models and yield very powerful tests of hypotheses nested within
these models.
Unlike their small T -large N counterparts, the large N-large T panels create new econo-

metric challenges not only to develop new estimators and test statistics but also to solve the
technical difficulties raised in asymptotic analysis where both N and T go to infinity. There
now exists a substantial amount of literature that extends traditional single index (either
large T or large N but not both) asymptotic theory to the double indexed case (large N and
large T together). One main research area for analysing these large T and large N panels
has been an extension of the single time series-based unit root or cointegration tests into the
panel-based ones. See for example, Levin and Lin (1993), Quah (1994), McCoskey and Kao
(1998), Maddala and Wu (1999), Pedroni (1999), Kao (1999), Hadri (2000), Choi (2001) and
Im et al. (2002). See also the survey papers by Banerjee (1999), Smith (2000) and Baltagi
and Kao (2002) for related issues.
Nearly all of the papers in this burgeoning literature adopt approximations based on

sequential asymptotic theory, which assumes that the time (T ) and cross-section (N) dimen-
sions grow infinitely large in strict sequence, namely T first followed by N . However, from a
practitioner’s viewpoint, sequential asymptotic theory seems somewhat artificial because one
is dealing with data where T and N are large together. An exception is Phillips and Moon
(1999) who provide rigorous joint asymptotic analysis of pooled estimators obtained from
(static) regressions in panels with nonstationary regressors when the underlying regression
disturbances follow general (linear) stationary processes. In this analysis, if the additional
condition that N/T → 0 holds, then they show that sequential asymptotic results for their
pooled estimators would be equivalent to the joint ones. See also Kauppi (2000) for a joint
asymptotic analysis of pooled estimates in the context of panels containing near integrated
regressors with heterogeneous localising parameters. These exceptions apart, joint asymp-
totic results have rarely been used for inference in studies to date. The key reason why
sequential asymptotic analysis continues to be used lies almost certainly in its simplicity. In
fact, this type of analysis is usually little different from its conventional single index (sin-
gle equation-large T ) counterpart and thus the underlying statistical assumptions used in
conventional single equation analysis rarely need to be altered.
Another important modelling problem in large T -large N panels is the extent of cross-

sectional heterogeneity. This may be so large as to preclude the use of pooling [the method
adopted by Phillips and Moon (1999) and Kauppi (2000)]. Since it is now possible to estimate
a separate regression for each panel unit (which is not possible in the small T case), it is
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also natural to think of heterogeneous panels where the parameters can differ over cross-
section units. An approach that is becoming increasingly popular in this context is to focus
estimation and inference on so called mean group quantities that are “averages” across panel
units. This approach has been advanced by Pesaran and Smith (1995) for estimation, and
first applied to the panel-based unit root test by Im et al. (2002).
Our test is based on the mean of the KPSS stationarity test statistics from each panel

unit [see Kwiatokwski et al. (1992)], which in turn are computed using parametric estima-
tion of the long-run variance of the underlying serially correlated disturbances. Using both
sequential and joint asymptotic theory where T and N are allowed to grow large in sequence
and together, respectively, we show that the suggested test statistic has a standard normal
distribution as both N and T grow without bounds under the null hypothesis of stationar-
ity. More important perhaps is that the joint asymptotic approach also predicts that unless
N/T is small, then the asymptotic limit will fail, which suggests that sequential asymptotic
analysis may be misleading as a guide to using mean group tests in small samples.
The finite sample performances of the proposed mean group statistic are examined using

Monte Carlo experiments. The simulation results seem to support the joint asymptotic
theory quite well in the sense that the size of the tests is close to the nominal level while
retaining significantly higher power than obtained in the single time series case. But, there
are some situations where the suggested test tends to over-reject. This over-size problem,
which is of more concern for the stationarity test in the presence of serial correlation, is
shown to be greatly reduced by a finite-sample adjustment based on the non-parametric
group-based estimator of the individual stationarity statistic, which is obtained empirically.
In particular, this modification seems to be very effective in pseudo panels where T ≥
N . Another practically important finding is that the mean group stationarity tests, when
constructed in conjunction with the non-parametric long-run variance estimator suggested
by KPSS, is of no use with the typical sample sizes encountered because of massive size
distortions in almost all cases considered.
The layout of the paper is as follows. Section 2 discusses underlying models and assump-

tion. Section 3 presents the mean group KPSS stationarity test. Section 4 examines the
small sample performance of the suggested statistics. Section 5 provides some concluding
remarks. All the proofs are stored in the Mathematical Appendix.

2 Model

We suppose that the stochastic process, yit, consists of unobserved components over a sample
of N cross-sections and T time periods:

yit = αi + eit, i = 1, ..., N ; t = 1, ...T, (2.1)

where

eit = γit + uit; γit = γit−1 + vit, (2.2)

αi’s are unknown parameters. Since the intercepts are included in each individual regressions,
it is assumed that γi0 = 0 for all i without loss of generality. The above model can be easily
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extended to allow for linear time trends with heterogenous coefficients. We assume that the
uit for i = 1, ..., N and t = 1, ..., T, are independently distributed stationary variates with
zero means and finite (possibly heterogenous) variances, σ2ui , and that the vit are iid variates
with zero means and variances, σ2vi .
We consider testing the null hypothesis that all yit’s are stationary (around deterministic

components),

H0 : σ
2
v1
= · · · = σ2vN = 0, (2.3)

against the alternatives

H1 : σ
2
vi
> 0, i = 1, ..., N1; σ

2
vi
= 0, i = N1 + 1, ..., N2. (2.4)

This alternative hypothesis allows for σ2vi to differ across groups and includes the homoge-
neous alternative of σ2vi = σ2v > 0 for all i as a special case. It also implies that some of
the individual series may be stationary under the alternative. As will be shown below, the
consistency of the proposed panel stationarity test is ensured if the fraction of the individual
processes that are unit root is non-zero under (2.4).

3 Testing for Stationarity in Heterogeneous Panels

In this section we will use the ‘mean group test’ approach advanced by Pesaran and Smith
(1995) and Im et al. (2002) in the context of estimating dynamic heterogeneous panels, where
they showed that the conventional pooled estimator is inconsistent in such a situation. While
a test based on pooled estimates can also be employed, it might result in misleading inferences
in panels with heterogeneous dynamics, as shown via Monte Carlo simulation studies in Im
et al. (2002). By contrast, the mean group approach takes full account of heterogeneity in
panel units and is thus a more natural vehicle for testing in such contexts. It yields a test
that is consistent against several types of partial departures from the null and exploits the
panel dimension of the data without having to introduce the homogeneity assumption that
would allow pooled estimation.
In this section, we utilise both joint and sequential asymptotic theories in deriving limits

of the mean group test statistics and analyse their role in guiding empirical practice.

3.1 The Case with Serially Uncorrelated Errors

We begin with a simple case where the underlying stationary disturbances uit are Gaussian
white noise, and assume:

Assumption 3.1 The uit’s in (2.2) are independent normal variates with zero means and
finite heterogenous variances, σ2ui > 0.

The statistic for stationarity for the individual group is defined by (see Kwiatkowski et
al., 1992, hereafter KPSS)

ηiT =
T−2

PT
t=1 s

2
it

σ̂2iT
, (3.1)
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where sit =
Pt

j=1 êij is the partial sum process of the OLS residual obtained from the
regression of yit on constant (i.e. demeaned data), and

σ̂2iT =
1

T

TX
t=1

ê2it. (3.2)

Under the null hypothesis of stationarity, KPSS have shown that as T →∞,

ηiT
T⇒ ηi =

Z 1

0

V (r)2dr, (3.3)

where V (r) = W (r) − rW (1) is a standard Brownian bridge, and W (r) is a standard

Brownian motion defined on r ∈ [0, 1], and where here and henceforth, T⇒
³
N⇒
´
denotes weak

convergence as T → ∞ (N →∞). Under the alternative hypothesis of a unit root, ηiT
diverges to infinity. The mean and variance of the standard Brownian bridge are

µ = E

µZ 1

0

V (r)dr

¶
=
1

6
; ω2 = V ar

µZ 1

0

V (r)dr

¶
=
1

45
. (3.4)

See, for example, Hadri (2000) for an analytic derivation via the characteristic function
method.
In this paper we consider the following panel-based statistic for stationarity:

τNT =
1√
N

NX
i=1

µ
ηiT − µ

ω

¶
. (3.5)

Under very general assumptions for the uit’s including those of Assumption 3.1 above as a
special case, it is easy to show that this statistic weakly converges to a standard normal
variate sequentially with T →∞, followed by N →∞.
More specifically, for each i, as T →∞, the individual statistic ηiT weakly converges to

ηi of (3.3), so that we may write

τNT
T⇒ τN =

1√
N

NX
i=1

µ
ηi − µ
ω

¶
. (3.6)

Next, using the fact that the ηi’s are iid with mean µ and variance ω2 under Assumption
3.1, and by invoking the Lindberg-Levy central limit theorem (CLT), we have as N →∞,

τN
N⇒ τ ∼ N (0, 1) . (3.7)

In sum, the prediction of sequential asymptotic theory is that the mean group statistic τNT
will be asymptotically standard normal. However, this asymptotic result may be misleading
in small samples empirically unless N/T is small, as the following joint asymptotic analysis
will show. In particular, the following theorem derives the condition on N and T for the
standard normal limit to be reliable in small samples:
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Theorem 3.1 Under Assumption 3.1, and under the null hypothesis (2.3), as T →∞ and
N → ∞ with N/T → 0, the τNT statistic defined by (3.5) weakly converges to a standard
normal variate. Under the alternative hypothesis (2.4), as T,N → ∞ and N1/N → δ > 0,
τNT diverges to infinity.

Proof. See the Appendix.
In the case where yit is regressed on an intercept and a linear time trend, it has also been

shown (e.g. KPSS) that the individual stationarity test statistic converges in distribution to
the random variable,

ηiT
T⇒ ηi =

Z 1

0

V2(r)
2dr

where V2(r) = [W (r) + (2r − 3r2)W (1) + 6r (r − 1)
R 1
0
W (s) ds is a second level Brownian

Bridge process. In this case the construction of the panel stationarity test statistic would
be slightly modified, i.e. we replace the de-meaned process by the de-trended one, and use
the mean and variance of the integral of the second-level standard Brownian Bridge process
which are given by [e.g. Hadri (2000)]

µ = E

∙Z 1

0

V2(r)dr

¸
=
1

15
; ω2 = V ar

∙Z 1

0

V2(r)dr

¸
=

1

6300
.

The panel stationarity statistic thus constructed can be also shown to satisfy the same
asymptotic properties as given above.

3.2 General Case with Serially Correlated Errors

In this section we consider a more general case where the stationary disturbances in the
model are serially correlated with different serial correlation patterns across groups.

Assumption 3.2 The uit in (2.2) follow stationary AR(p) processes with heterogenous co-
efficients |ρi| < 1,

uit =

pX
j=1

ρijui,t−j + εit, i = 1, ..., N ; t = 1, ..., T, (3.8)

where the εit’s are iid normal variates with zero means and finite heterogenous variances,
σ2εi > 0.

Notice that the long run variance of uit is now given by

σ2ui =
σ2εi³

1−
Pp

j=1 ρij
´2 . (3.9)

One straightforward parametric approach to estimate the long-run variance of uit is given
by

σ̂2iT,P1 = σ̂2eiT ×
1−

Pp
j=1 ρ̂

2
ij³

1−
Pp

j=1 ρ̂ij
´2 , (3.10)
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where ρ̂ij is the
√
T -consistent estimator of ρij in (3.8),

σ̂2eiT =
1

T

TX
t=1

ê2it, (3.11)

and êit is the residual obtained from the OLS regression of yit on constant. Therefore, we
define the following statistic:

τNT,P1 =
1√
N

NX
i=1

µ
ηiT,P1 − µ

ω

¶
, (3.12)

where ηiT,P1 =
T−2

PT
t=1 s

2
it

σ̂2iT,P1
is the individual statistic accommodated to deal with the presence

of serial correlation.
Alternatively, we could estimate the long-run variance by

σ̂2iT,P2 =
σ̂2εiT³

1−
Pp

j=1 ρ̂ij
´2 , (3.13)

where σ̂2εiT =
1
T

PT
t=1 ε̂

2
it and ε̂it is the residual obtained from the OLS regression of yit on

constant and yit−1, ..., yi,t−p, and thus obtain the following statistic:

τNT,P2 =
1√
N

NX
i=1

µ
ηiT,P2 − µ

ω

¶
, (3.14)

where ηiT,P2 =
T−2

PT
t=1 s

2
it

σ̂2iT,P2
. Except for this, the algebraic representation of the test statistic

is basically unchanged from the simple case.
To obtain consistent estimates of ρij, j = 1, ..., p, to be used in (3.9), we follow Ley-

bourne and McCabe (1998) and estimate an over-differenced ARIMA (p, 1, 1) model for the
demeaned yit, i.e.

∆ỹit =

pX
j=1

ρij∆ỹi,t−1 + wit − θiwi,t−1, (3.15)

where ỹit = yit − 1
T

PT
t=1 yit. Here we use the following generalised least squares (GLS)

estimator,

ρ̂i =
³
∆Zf

0

i ∆Z
f
i

´−1
∆Zf

0

i ∆y
f
i , (3.16)

where ρi = (ρi1, ρi2, ..., ρip)
0
is the p× 1 vector, and Zfi =

³
ỹfi,−1, ỹ

f
i,−2, ..., ỹ

f
i,−p

´
is the T × p

matrix containing T filtered observations on the p lagged de-meaned series, ỹi = (ỹi1, ..., ỹiT )
0
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and ỹi,−j = (ỹi,−j+1, ..., ỹiT−j)
0 with ỹi,t−j = yi,t−j − 1

T

PT
t=1 yi,t−j. Superscript f denotes

application of the filter
³
1− θ̂iL

´−1
such that

∆ỹfit =
tX
j=0

θ̂ji∆yit−j,

and θ̂i is the consistent estimator of the moving average parameter from the ARIMA (p, 1, 1)
model. We now assume:

Assumption 3.3 For all i = 1, ..., N , ρi ∈ Θρ and σ2εi ∈ Θσ, where Θρ is a compact subset
of Rp and Θσ a compact subset of R. In addition , ρi and σ2εi i = 1, 2...N are deterministic
parameter sequences.

Again following Leybourne and McCabe (1998), it can be shown under Assumptions 3.2
and 3.3 that the GLS estimator ρ̂i is

√
T -consistent for both cases with θi = 1 (null) and

with θi < 1 (alternative).
Using the sequential asymptotic approach, it is now straightforward to show that both

mean group statistics, τNT,P1 and τNT,P2, weakly converge to standard normal variates. First,
for each i, as T → ∞, the individual statistics ηiT,P1 and ηiT,P2 weakly converge to ηi as
defined by (3.3), since both σ̂2iT,P1 and σ̂

2
iT,P2 are consistent estimates of the long-run variance

of uit given by (3.9). That is, as T →∞,

τNT,P1
T⇒ τN , τNT,P2

T⇒ τN , (3.17)

where τN =
1√
N

PN
i=1

¡
ηi−µ
ω

¢
. Again noting that ηi’s are iid with mean µ and variance ω2

and using the Lindberg-Levy central limit theorem, we also have as N →∞, τN N⇒ N (0, 1).
The prediction of sequential asymptotic theory is again that the mean group statistics

τNT,P1 and τNT,P2 will be asymptotically standard normal. Next, we will derive a further
condition on N and T for the standard normal limit to hold under joint asymptotic analysis.

Theorem 3.2 Suppose that Assumptions 3.2 and 3.3 hold. Then, under the null hypothesis
(2.3), as T → ∞ and N → ∞ with N/T → 0, the panel-based stationarity test statis-
tic defined by (3.12) or (3.14) weakly converges to a standard normal variate. Under the
alternative hypothesis (2.4), as T,N →∞ and N1/N = δ > 0, it diverges to infinity.

Proof. See the Appendix.
Theorem 3.2 also shows that it is necessary for the validity of the test under the null that

N/T tends to zero. But, notice that this finding is consistent with Phillips and Moon (1999)
who also find that sequential asymptotic results can only be extended to joint results with
an additional condition on the relative size of T and N .
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4 Monte Carlo Simulation Results

In this section we use Monte Carlo experiments to examine finite sample properties of our
proposed panel-based stationarity test.
We consider the two sets of Monte Carlo experiments. The first set focuses on the

benchmark model,

yit = αi + eit, i = 1, ..., N ; t = 1, ...T, (4.1)

eit = γit + uit, γit = γit−1 + vit, γi0 = 0. (4.2)

The second set of experiments allows for the presence of positive (heterogeneous) AR(1)
serial correlations in uit,

uit = ρiui,t−1 + εit, t = 1, ..., T ; i = 1, ..., N, (4.3)

where ρi ∼ U [0.2, 0.4], U stands for a uniform distribution and ρi’s are generated indepen-
dently of εit.
In all of the experiments εit (or uit when ρi = 0) and vit are independently generated as iid

normal variates with zero means and heterogeneous variances, σ2ui and σ2vi . The parameters
αi, σ

2
ui
and σ2vi are generated by

αi ∼ N(0, 1), σ2ui ∼ U [0.5, 1.5], σ
2
vi
∼ σ2v × U [0.5, 1.5], i = 1, 2, ..., N. (4.4)

All of the parameter values such as αi, σ
2
ui
, σ2vi , ρi or ψi are generated independently of

εit and vit once, and then fixed throughout replications. Throughout all of Monte Carlo
experiments we set σ2v = 0 under the null, but σ2v = 0.01 (Experiment 1) and σ2v = 0.1
(Experiment 2) under the alternative hypothesis. We will evaluate empirical size and power
of the alternative tests at 5% nominal level.
The first set of experiments based on 5,000 replications were carried out for T = 15, 20,

30, 50, 100, and N = 1, 10, 25, 50, 100. Here we only consider the τNT statistic defined in
(3.5), and the stochastic simulation results are summarized in Table 1(a).

Table 1(a) about here

As a benchmark, we also give the results for N = 1. The simulation results here clearly
show that the τNT test performs well when T is large relative to N . The power of the test
rises monotonically with N and T , though it depends critically more on T . Hence, it is
possible to substantially augment the power of the stationarity tests applied to single time
series. Turning to the size performance, we find that the τNT test tends to over-reject in
some situations, especially as N increases relative to T , though the size of the τNT test gets
closer to the nominal 5% as T increases for a fixed N . Overall this finding is quite consistent
with the joint asymptotic result in Section 3 that the normal approximation of the τNT test
is valid only under N/T → 0.
In general, the above result is unsatisfactory in the sense that there is no clear guidance

on the ratio of N to T in practice that avoids substantial upward size distortions. To remedy
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these problems we now suggest the following finite-sample adjustment, which is designed for
the pseudo panels where T ≥ N .1 Consider the non-parametric group-based estimator of
ω2, denoted by ω̂2N and obtained simply by

ω̂2N =
1

N − 1

NX
i=1

(ηiT − ηT )
2 ,

where ηiT is the individual stationarity statistic defined by (3.1), and ηT =
1
N

PN
i=1 ηiT is the

empirical group mean. We now propose the following modified statistic:

τNT (δ) =
1√
N

NX
i=1

(ηiT − µ)×
1

ωδω̂1−δN

, 0 ≤ δ ≤ 1. (4.5)

τNT (δ) can also be rewritten as

τNT (δ) =

µ
ω

ω̂N

¶1−δ
1√
N

NX
i=1

(ηiT − µ)
ω

=

µ
ω

ω̂N

¶1−δ
τNT .

The asymptotic equivalence of the modified τNT (δ) test to the τNT test under the null is
clearly ensured since ω

ω̂N
→ 1 under the null as T and N both tend to grow without bound.

Under the alternative, it is easily seen that the test diverges at rate
√
NT 2δ.

The first set of experiments based on 5,000 replications were repeated using the τNT (δ)
test for different values of δ. Table 1(b) now presents these simulation results for δ =
1, 0.75, 0.5, 0.25, 0.

Table 1(b) about here

For purposes of comparison we also give the result for δ = 1, which is the same as the
unmodified τNT test. Table 1(b) clearly shows that the rejection frequency of the test always
gets smaller as δ decreases. For example, the test is over-sized when δ = 1, while it is
under-sized in all most all cases when δ = 0. In general, the direct power comparison of
the τNT (δ) for different values of δ is problematic, and thus the significantly larger power of
the τNT,P1 (1) test over other tests should be discounted. For this reason, we recommend to
use the τNT,P1 (0.5) test in practice, since its size is close to nominal level in most cases, in
particular when T ≥ N . This is clearly a compromise, since choosing higher value of δ would
give over-rejection (size distortion), while choosing lower value of δ would make the test less
powerful. Comparing the power of the test based on the single time series (see Table 1(a)),
we still find that there is a substantial gain in the power of the panel-based stationarity tests.
Next, we consider the Experiment 2 where the underlying DGP contain serially correlated

errors. In this case we should use the test developed in section 3.2, namely τNT,P1 and τNT,P2
statistics defined by (3.12) and (3.14). We also consider the finite sample modification used

1Notice that the finite sample correction suggested here is not clearly plausible in the single time series
case. Though we focus on the case of T ≥ N , this correction seems to work in the case where T ≥ 30 and
N is slightly larger than T as will be shown.
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previously, i.e. see (4.5), and denote them as τNT,P1 (δ) and τNT,P2 (δ), accordingly. As will
be shown below this modification plays a more important role since the unmodified test will
suffer from more size distortions in the presence of serial correlation.
In addition we consider alternative panel stationarity tests based on the non-parametric

estimation of the underlying long-run variance as suggested by KPSS in the single time
series; that is,

τNT,NP (`) =
1√
N

NX
i=1

µ
ηiT,NP (`) − µ

ω

¶
, (4.6)

where

ηiT,NP (`) =
SiT
s2i (`)

; s2i (`) =
1

T

TX
t=1

ê2it +
2

T

X̀
j=1

w (j, `)
TX
t=1

êitêit−j,

and w (j, `) is an optional weighting function that corresponds to the choice of a spectral
window. Following KPSS we here use the Bartlett window, w (j, `) = 1− j

`+1
. As was shown

by KPSS the choice of the lag truncation, `, is crucial for the test to have the reasonable
finite sample performance, though there is no simple choice in practice. Here we use the two

lag truncation values `4 = integer
h
4×

¡
T
100

¢ 1
4

i
and `12 = integer

h
12×

¡
T
100

¢ 1
4

i
, following

KPSS. Though we have not provided any theoretical justification for the validity of such
tests, a sketch of their properties may be gained via Monte Carlo experiments.
Tables 2(a)-2(c) summarize the simulation results of alternative tests for the second set

of experiments .

Tables 2(a)− 2(c) about here

First, the results in Table 2(a) clearly show the importance of appropriately choosing the
value of δ for controlling the size performance of the tests in general. For example, when
δ = 1 and thus no finite sample modification is made, then the τNT,P1 test suffers from the
over-rejection. Its size tends to nominal level as T increases for a fixed N , but quite slowly.
The problem is particularly more serious as N increases for a fixed T . Again this behavior
is consistent with the joint asymptotic theory. On the other hand, the choice of δ = 0 would
render the test being under-sized in all cases. Notice also that the size of the τNT,P1 (0) test
seems to slowly tend to nominal size as N increases for a fixed T . As expected, the higher
the value of δ is, the more the rejection frequency of the test and vice versa. Turning to
the power performance, the power of the tests rises monotonically with N and T , but the
rise in T improves the power more significantly. One important finding with the serially
correlated data is that we need sufficiently large time periods to augment the power of the
panel-based stationarity tests. For example, when T = 15, the power of the τNT,P1 (0.5) test
increases only from 0.042 for N = 10 to 0.112 for N = 100, while when T = 20, the power
of the τNT,P1 (0.5) test increases from 0.147 for N = 10 to 0.747 for N = 75. Against the
alternative used here we find that the power of the τNT,P1 (0.5) test is quite substantial when
T ≥ 30, which is clearly a great improvement over the single time series case. This finding
leads us to recommend the use of the τNT,P1 (0.5) test in practice, the size of which is more
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or less close to the nominal 5% level in most cases when T ≥ N . Alternatively, when N ≥ T ,
but N is not extremely larger than T , then the τNT,P1 (0.25) test may be considered.
Second, similar phenomena have been found if we consider the results for the τNT,P2

test presented in Table 2(b), though the size-distortion of the τNT,P2 (1) test is much more
serious than the τNT,P1 (1) test. Based on the overall simulation results in this case we may
recommend use of the τNT,P2 (0.25) test, though it has a slightly worse size-distortion than
the τNT,P1 (0.5) test, as N rises for a given T . Turning to the power comparison between the
τNT,P1 (0.5) and τNT,P2 (0.25) tests, we find that the power of both tests are similar.
Finally, the simulation results for the finite sample performance of the tests based on the

non-parametric estimation of the underlying long-run variance are presented in Table 2(c).
Here we find quite strongly that the non-parametric correction in the panel context does not
seem to work properly. In particular, there are massive size distortions for almost all cases
considered. Even the finite sample modification, which has been effective to controlling size
of the test based on the parametric estimation of the long-run variance, does not reduce
the size distortion to any significant degree. Looking at the results for τNT,NP (`12) (1) more
closely, the size continues to be closer to the nominal level as T increases for a fixed N , e.g.
when N = 10, from .899 for T = 10 to .113 for T = 100. But, this rate of convergence seems
to be much slower than in the single time series case. Overall this simulation result may
indicate that the use of non-parametric based statistic is much less useful in the panels with
the typical sample sizes encountered in practice.
In sum, the Monte Carlo results seem to support the joint asymptotic theory. Moreover,

the finite sample modification suggested in this section seems clearly effective in rendering
the size of the tests based on the parametric estimation of the long—run variance close to the
nominal level while retaining significantly higher power than obtained in the single time series
case. Considering that it is more important to have the correct nominal size in the setting
of the stationarity test, we recommend to use the τNT,P1 (0.5) test in empirical application
though there may be some situations where this test tend to over-reject especially when
T ≤ N .2

5 Concluding Remarks

In this paper we have developed a computationally simple procedure for testing the null of
stationarity hypothesis against the alternative of unit roots in heterogeneous pseudo panels
where N and T are jointly large. Using the joint asymptotic approach we have shown that
the suggested test statistic has a standard normal distribution as both N and T grow without
bounds but with N/T tending to zero under the null, even in the case where panels have
both parameters heterogeneity across cross-section units and serial correlation across time
periods.
The small sample properties of the proposed tests are investigated via Monte Carlo

methods. It is found that when there are no serial correlations in the underlying errors,

2We have also examined a third set of experiments which allows for a linear trend in estimation of the
ADF regressions using the same data generating process employed in the second set of experiments. The
simulation results are qualitatively similar to the above except the power increases more slowly with increased
N than before.
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the suggested tests perform very well even as T is small as 15. In this case it is possible
to substantially augment the power of the stationarity tests applied to single time series.
The situation is more complicated when the disturbances in the panel are serially correlated;
in fact, the suggested test tends to over-reject especially when T is relatively small. This
over-size problem is shown to be greatly reduced by a finite-sample adjustment based on the
empirically obtained non-parametric group-based estimator of the individual stationarity
statistics. This modification seems to be very effective in the pseudo panels where T ≥ N ,
while at the same time maintaining the substantial power boost.
Extension of the test to the case where disturbances are correlated across panel units

presents no great difficulties provided these correlations may be satisfactorily accommodated
by a simple common time specific additive factor in each panel equation. In this case we
could follow Im et al. (2002) and work with the cross-section de-meaned data, yit−ytg, where
yt
g =

PN
i=1 yit/N . The proofs can be readily but tediously extend to such a case. Considering

that there are currently a few studies investigating the impact of a general structure of cross
section dependence on the performance of unit root tests in dynamic heterogeneous panels
[e.g. Chang (2000) and Phillips and Sul (2002)], however, the extension of the current mean
group tests for stationarity along this line of research will be of more interest, which we leave
for future research.
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Table 1(a). Finite Sample Performance of the τNT Test for Experiment 1
T\N 1 10 25 50 100

size power size power size power size power size power
15 .056 .083 .082 .156 .083 .254 .111 .422 .165 .616
20 .055 .117 .072 .413 .072 .717 .086 .920 .109 .989
30 .049 .146 .073 .484 .071 .843 .083 .941 .094 .999
50 .050 .287 .067 .927 .067 .996 .080 1.00 .073 1.00
100 .049 .587 .061 1.00 .066 1.00 .063 1.00 .066 1.00

Table 1(b). Finite Sample Performance of the τNT (δ) Test for Experiment 1
δ 1 0.75 0.5 0.25 0

T N size power size power size power size power size power
15 10 .082 .156 .071 .137 .061 .121 .051 .104 .043 .088
20 10 .068 .270 .057 .241 .045 .207 .036 .171 .032 .140
30 10 .073 .484 .062 .446 .046 .402 .033 .331 .026 .247
50 10 .067 .927 .053 .914 .042 .892 .029 .846 .021 .713
100 10 .061 1.00 .049 1.00 .036 1.00 .025 1.00 .017 .986
15 25 .083 .254 .076 .238 .067 .222 .061 .207 .056 .189
20 25 .085 .438 .077 .412 .067 .393 .060 .364 .052 .325
30 25 .071 .843 .062 .823 .048 .797 .042 .758 .035 .686
50 25 .067 .996 .057 .995 .047 .994 .036 .990 .028 .975
100 25 .066 1.00 .056 1.00 .044 1.00 .031 1.00 .020 1.00
15 50 .111 .422 .107 .412 .104 .402 .099 .390 .095 .381
20 50 .095 .674 .090 .662 .085 .645 .079 .622 .073 .594
30 50 .083 .941 .077 .936 .069 .927 .063 .914 .056 .894
50 50 .080 1.00 .068 1.00 .059 1.00 .049 1.00 .041 1.00
100 50 .063 1.00 .053 1.00 .045 1.00 .038 1.00 .030 1.00
15 100 .165 .616 .167 .616 .168 .617 .170 .616 .172 .616
20 100 .124 .902 .120 .900 .117 .897 .113 .893 .108 .887
30 100 .094 .999 .087 .999 .080 .999 .076 .999 .070 .999
50 100 .073 1.00 .067 1.00 .061 1.00 .054 1.00 .047 1.00
100 100 .066 1.00 .060 1.00 .053 1.00 .046 1.00 .040 1.00
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Table 2(a). Finite Sample Performance of the τNT,P1 (δ) Test for Experiment 2
δ 1 0.75 0.5 0.25 0

T N size power size power size power size power size power
15 10 .066 .082 .041 .061 .030 .042 .014 .025 .006 .015
20 10 .104 .230 .070 .190 .049 .147 .025 .094 .009 .048
30 10 .118 .614 .093 .567 .064 .502 .033 .380 .011 .201
50 10 .112 .928 .088 .918 .058 .895 .028 .833 .011 .634
100 10 .084 1.00 .064 1.00 .046 1.00 .025 1.00 .015 .990
15 25 .056 .098 .042 .080 .028 .059 .019 .045 .010 .030
20 25 .105 .385 .085 .349 .064 .296 .038 .228 .017 .151
30 25 .153 .872 .128 .856 .087 .823 .051 .753 .022 .627
50 25 .132 1.00 .106 1.00 .076 1.00 .044 .999 .021 .993
100 25 .084 1.00 .068 1.00 .051 1.00 .035 1.00 .018 1.00
15 50 .055 .141 .044 .122 .033 .101 .020 .085 .013 .059
20 50 .118 .605 .096 .576 .073 .520 .050 .450 .023 .371
30 50 .174 .982 .146 .980 .110 .976 .074 .961 .038 .927
50 50 .136 1.00 .106 1.00 .083 1.00 .053 1.00 .032 1.00
100 50 .077 1.00 .064 1.00 .049 1.00 .035 1.00 .024 1.00
15 100 .034 .150 .028 .132 .021 .112 .015 .096 .009 .077
20 100 .130 .805 .106 .783 .090 .747 .068 .710 .043 .660
30 100 .208 1.00 .173 1.00 .132 .999 .100 .999 .068 .999
50 100 .148 1.00 .124 1.00 .098 1.00 .075 1.00 .032 1.00
100 100 .096 1.00 .081 1.00 .065 1.00 .052 1.00 .038 1.00

Table 2(b). Finite Sample Performance of the τNT,P2 (δ) Test for Experiment 2
δ 1 0.75 0.5 0.25 0

T N size power size power size power size power size power
15 10 .088 .152 .065 .113 .040 .082 .017 .045 .006 .018
20 10 .154 .356 .113 .306 .068 .234 .036 .138 .007 .048
30 10 .179 .721 .138 .697 .088 .637 .043 .479 .010 .166
50 10 .155 .952 .120 .945 .082 .932 .035 .882 .011 .523
100 10 .104 1.00 .087 1.00 .061 1.00 .028 1.00 .014 .888
15 25 .091 .198 .068 .170 .048 .128 .025 .080 .013 .043
20 25 .178 .570 .140 .521 .100 .447 .051 .340 .015 .175
30 25 .228 .932 .196 .922 .146 .897 .072 .837 .022 .610
50 25 .202 1.00 .163 1.00 .114 1.00 .059 1.00 .021 .974
100 25 .117 1.00 .090 1.00 .068 1.00 .043 1.00 .019 1.00
15 50 .087 .270 .071 .227 .049 .189 .032 .140 .015 .095
20 50 .192 .796 .150 .760 .112 .701 .072 .606 .033 .468
30 50 .287 .995 .239 .993 .182 .989 .111 .983 .046 .947
50 50 .229 1.00 .187 1.00 .139 1.00 .081 1.00 .038 1.00
100 50 .118 1.00 .095 1.00 .069 1.00 .045 1.00 .025 1.00
15 100 .082 .344 .062 .303 .045 .262 .031 .210 .016 .152
20 100 .239 .948 .193 .936 .153 .914 .109 .880 .062 .798
30 100 .327 1.00 .281 1.00 .232 1.00 .166 1.00 .089 1.00
50 100 .275 1.00 .226 1.00 .179 1.00 .125 1.00 .069 1.00
100 100 .150 1.00 .131 1.00 .106 1.00 .071 1.00 .045 1.00
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Table 2(c). Finite Sample Performance of Non-parametric-based Tests for Experiment 2
τNT,NP (`4) (δ) τNT,NP (`12) (δ)

δ 1 0.5 0 1 0.5 0
T N size power size power size power size power size power size power
15 10 .365 .787 .411 .814 .467 .825 .899 .963 1.00 .999 1.00 1.00
20 10 .424 .877 .435 .875 .454 .850 .636 .876 .907 .984 .989 1.00
30 10 .293 .957 .301 .947 .311 .921 .261 .821 .496 .917 .718 .967
50 10 .350 .998 .314 .995 .267 .985 .131 .935 .200 .942 .292 .951
100 10 .296 1.00 .258 1.00 .195 1.00 .113 1.00 .116 1.00 .130 .998
15 25 .788 .993 .890 .996 .937 .997 1.00 1.00 1.00 1.00 1.00 1.00
20 25 .783 .998 .811 .999 .839 .999 .922 1.00 1.00 1.00 1.00 1.00
30 25 .611 1.00 .646 1.00 .675 1.00 .738 .999 .924 1.00 .982 1.00
50 25 .640 1.00 .635 1.00 .624 1.00 .324 1.00 .469 1.00 .606 1.00
100 25 .486 1.00 .455 1.00 .417 1.00 .172 1.00 .193 1.00 .233 1.00
15 50 .960 1.00 .980 1.00 .990 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 50 .968 1.00 .979 1.00 .985 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 50 .898 1.00 .923 1.00 .945 1.00 .982 1.00 .999 1.00 1.00 1.00
50 50 .884 1.00 .890 1.00 .897 1.00 .610 1.00 .765 1.00 .873 1.00
100 50 .779 1.00 .775 1.00 .760 1.00 .291 1.00 .355 1.00 .428 1.00
15 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 100 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 100 .994 1.00 .998 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 100 .997 1.00 .997 1.00 .999 1.00 .921 1.00 .978 1.00 .995 1.00
100 100 .956 1.00 .959 1.00 .960 1.00 .555 1.00 .632 1.00 .709 1.00
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A Appendix A

In what follows the phrase “k-th moment of zit is bounded” will be used to imply that for any given i and
T , E(zkit) has some fixed upper bound and for any given i this upper bound is O(1) (or o(1)) in T.

A.1 Proof of Theorem 3.1

For this we analyse the discrepancy between τNT and τN∞; that is, analyse DNT where

DNT = τN∞ − τNT =
1

ω

1√
N

NX
i=1

diT , (A.1)

where

diT = ηi∞ − ηiT =
Si∞
σ2i
− SiT

σ̂2iT
=
(Si∞ − SiT )

σ2i
+
SiT
σ2i

¡
σ̂2iT − σ2i

¢
σ̂2iT

, (A.2a)

SiT = T
−2

TX
t=1

s2it; ηiT =
SiT
σ̂2iT

; ηi∞ =
Si∞
σ2i

. (A.3)

Using (A.1) and (A.2a) we may write

DNT =
1

ω

(
1√
N

NX
i=1

(Si∞ − SiT )
σ2i

+
1√
N

NX
i=1

SiT
σ2i

¡
σ̂2iT − σ2i

¢
σ̂2iT

)
=
1

ω
(ANT +BNT ) . (A.4)

Then using the fact that τN∞ converges in distribution to a standard normal variate, it is sufficient for the
proof of the theorem to show that under the null as T →∞ and N →∞ with N/T → 0,

plimN,T→∞,N/T→0DNT = 0. (A.5)

We examine the probability limits of ANT and BNT in (A.4), separately. Notice that under σ
2
vi = 0,

yit = αi + uit, (A.6)

and thus σ2i = σ2ui .

We now show that the mean and variance of Si∞−SiT
σ2i

are bounded functions of T alone and are O(T−1)

and o(1) in T , respectively. We start by showing that all moments of SiT exist. By definition we have

T 2SiT = (ui1, ui2, ..., uiT )S (ui1, ui2, ..., uiT )
0
, (A.7)

S =MPP0M, (A.8)

whereM = IT − iT (i0T iT )
−1
i0T , iT denote a T ×1 vector of units and P is a T ×T upper triangular matrix of

units. Writing S in its canonical form as EΛE0 where Λ = diag (λj) are the eigenvalues of S, and E contains
the corresponding orthonormal eigenvectors, gives

T 2SiT =
TX
t=1

λtu
∗ 2
it , (A.9)

where (u∗i1, u
∗
i2, ..., u

∗
iT ) = (ui1, ui2, ..., uiT )E is a T × 1 vector of independent N

¡
0,σ2i

¢
variates. Using

Minkowski’s inequality we have"
E

Ã
TX
t=1

λtu
∗ 2
it

!r# 1
r

≤
TX
t=1

n
E
h¡
λtu
∗ 2
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¢rio 1
r

=
TX
t=1

λt
£
E
¡
u∗ 2rit

¢¤ 1
r

= 2σ2i (2r!)
1
2r

TX
t=1

λt = 2σ
2
i (2r!)

1
2r × T

3 − 9T 2 + 5T − 3
6T

, (A.10)
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where the last equality follows from the fact that σ2i
PT
t=1 λt = E(T

2SiT ). Dividing (A.10) by σ2i T
2 shows

that the rth moment of SiT
σ2i

has an upper bound that is o(1) in T . This allows us to invoke the Corollary of

Theorem 25.12 of Billingsley(1979) and interchange the limit and integration(expectation) operators 3 and
write

lim
T→∞

E

∙µ
SiT
σ2i

¶r¸
= E

∙µ
Si∞
σ2i

¶r¸
. (A.11)

By Hölder’s inequality we also obtain

lim
T→∞

E

µ
SiT
σ2i

Si∞
σ2i

¶
≤ lim

T→∞

vuutE "µSiT
σ2i

¶2#vuutE "µSi∞
σ2i

¶2#
= E

"µ
Si∞
σ2i

¶2#
≤ 2(4!) 14 .

(A.12)

Again boundedness of moments allows the interchange of limits and expectations to give

lim
T→∞

E

µ
SiT
σ2i

Si∞
σ2i

¶
= E

"µ
Si∞
σ2i

¶2#
. (A.13)

Using (A.10), (A.12) and the fact that second moment exceeds variance we have

lim
T→∞

V ar

µ
SiT − Si∞

σ2i

¶
≤ lim

T→∞
E
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2
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Expanding E (SiT ) gives

E

µ
SiT
σ2i

¶
=
1

6
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6T 3

= lim
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SiT
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¶
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¶
+O(T−1).

(A.14)

(A.14) and (A.14) establish that

lim
T→∞

V ar

µ
SiT − Si∞

σ2i

¶
= 0; E

µ
Si∞ − SiT

σ2i

¶
= O(T−1).

Denoting the first and second moment of Si∞−SiT
σ2i

for some fixed T (and any i) as M(T ) and V (T )

respectively, it follows that

E (ANT ) =
1√
N

NX
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E(Si∞ − SiT )
σ2i

= E

"
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#
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!
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(A.15)

and thus

lim
N,T→∞,NT →0

E(ANT ) = 0. (A.16)

Next, using the independence of panel units we may write

lim
N,T→∞,NT →0

V ar (ANT ) = lim
N,T→∞,NT →0

V ar

Ã
1√
N

NX
i=1

Si∞ − SiT
σ2i

!
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N,T→∞,NT →0

1

N

NX
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V (T )
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N,T→∞,NT →0

V (T ) = lim
T→∞

o(1) = 0. (A.17)

3This follows by application of the dominated convergence theorem. See, for example, Billingsley(1979,
p. 180).
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Using Chebyshev’s inequality, (A.16) and (A.17) imply that

plimN,T→∞,N/T→0ANT = plimN,T→∞,N/T→0

Ã
1√
N

NX
i=1

Si∞ − SiT
σ2i

!
= 0. (A.18)

We now show that the first and second moments of BNT in (A.4) are bounded and are O
³
T−

1
2

´
and

o(1) in T , respectively. Regarding the second moment of BNT we have
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where the second line follows from Hölder’s inequality. Applying Hölder’s inequality to E
³
SiT
σ2i
× 1

σ̂2iT

´4
gives

E
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≤

s
E
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¶8
E
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1
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. (A.19)

Notice that we have already shown above that E
³
SiT
σ2i

´8
is bounded (set r = 8 in (A.10)). The second term

under the square root in (A.19) is T times a univariate Inverted Wishart (IW ) variable with T − 1 degrees
of freedom. By direct integration using the formula for the IW pdf (e.g. Press (1972, p. 111)), it is easy to
show that the eighth moment of this term is finite for any i and T > TL and is O(1) in T for any i.

Next, the term
√
T
¡
σ̂2iT − σ2i

¢
is a standard textbook quantity from a fixed regressors regression with

normally distributed errors. It is well known that this quantity (which is proportional to a mean corrected
χ2T ) has a zero mean and bounded 4th moment.

Notice that all of the upper bounds given above and referred to in the previous paragraph are functions
of σ2i and T only. Because these functions depend on i only through σ2i we may write
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Notice here that QT
¡
σ2i
¢
is a bounded function for all σ2i ∈ Θσ where Θσ is the compact set, and therefore

is O(1) in T . Using these properties of QT (·) we may define for T ≥ TL,

Q∗T = max
σ2i∈Θσ

QT
¡
σ2i
¢
<∞. (A.21)

Combining (A.20) and (A.21) and using the property of independence across panels we have
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which clearly shows that

lim
N,T→∞,NT →0

E(B2NT ) = 0. (A.23)
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Using Jensen’s inequality it follows that

lim
N,T→∞,NT →0

E(BNT ) = 0. (A.24)

Chebyshev’s inequality now implies that

plimN,T→∞,NT →0BNT = 0. (A.25)

From the definition of DNT given in (A.4), it is clear that (A.18) and (A.25) establishes (A.5).
Next, under the alternative hypothesis (2.4) we have

τNT =
1√
N

NX
i=1

ηiT − µ
ω

=
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N

1

ω
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!
, (A.26)

where SiT,1 and bσ2iT,1 (SiT,0 and bσ2iT,0) stand for SiT and bσ2iT evaluated under σv2i > 0 (σv2i = 0). We have
already shown that as N2, T →∞ with N2

T → 0,

1

ω
√
N2

N2X
i=1

Ã
SiT,0bσ2iT,0 − µ

!
⇒ N (0, 1) .

Next, notice that for i ≤ N1, bσ2iT,1 is the sample mean of a squared I(1) variate and so is Op(T ). It has been
shown elsewhere (e.g. KPSS) that for i ≤ N1, SiT,1 is Op(T 2). Therefore,

GiT =
SiT,1bσ2iT,1 − µ = Op (T ) .

Under the condition that N1

N → δ > 0
¡
N2

N → 1− δ ≥ 0
¢
, it is easily seen that under the alternative hypothesis

(2.4),

plimAτNT =
√
δ × lim

A

p
N1 × plimA

PN1

i=1GiT
N1

+
√
1− δ ×N(0, 1) =∞,

where plimA and limA denote plim and lim as N , T →∞, NT → 0 and N1

N → δ, respectively.

A.2 Proof of Theorem 3.2

For sake of convenience we first prove (A.5) for the AR(1) case; that is, uit’s in (2.2) follow stationary AR(1)
processes with heterogenous coefficients |ρi| < 1,

uit = ρiuit−1 + εit, (A.27)

where the εit’s are iid normal variates with zero means and finite heterogenous variances, σ
2
εi . We will get

back to the proof for the general AR(p) case at the end of this subsection. Now, it is sufficient to show that
(A.18) and (A.25) hold for this case because the rest of the proof of (A.5) is not changed by the process
governing the yit.

A.2.1 Proof of (A.18)

It is now sufficient to show that the mean and variance of Si∞−SiT
σ2i

are bounded functions of T alone and

are O(T−1) and o(1) in T , respectively and that SiT
σ2i

possesses all moments in the AR(1) case. Then (A.15)

to (A.18) may be reapplied intact as before.
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(A.7) and (A.8) now become

T 2SiT = (εi1, εi2, ..., εiT )S (εi1, εi2, ..., εiT )
0
, (A.28)

S = Ω
1
2MPP0MΩ

1
2 , (A.29)

where Ω is the T×T covariance matrix of the vector (ui1, ui2, ..., uiT )0. Following similar arguments to before,
we write S in its canonical form as EΛE0 where Λ = diag (λj) are the eigenvalues of S, and E contains the
corresponding orthonormal eigenvectors, gives

T 2SiT =
TX
t=1

λtε
∗ 2
it ,

where (ε∗i1, ε
∗
i2, ..., ε

∗
iT ) = (εi1, εi2, ..., εiT )E is a T × 1 vector of independent N(0,σ2i ) variates. Using

Minkowski’s inequality we have"
E

Ã
TX
t=1

λtε
∗ 2
it

!r# 1
r

≤
TX
t=1

n
E
h¡
λtε
∗ 2
it

¢rio 1
r

=
TX
t=1

λt
£
E
¡
ε∗ 2rit

¢¤ 1
r

= 2σ2i (2r!)
1
2r

TX
t=1

λt = 2(2r!)
1
2rE

¡
T 2SiT

¢
,

where the last equality follows from the fact that σ2i
PT
t=1 λt = E(T

2SiT ). We shall now compute this last
quantity. It is easily established that

sit =
1

1− ρi
sit(0)−

ρi
1− ρi

beit, (A.30)

where siT (0) =
PT
t=1

Pt
j=1 bεij is constructed from partial sums of de-meaned white noise variates. Squaring

(A.30), summing, taking expectations and using (A.14) gives

E
¡
T 2SiT

¢
= E

"
1

(1− ρi)2

TX
t=1

s2it(0) +

µ
ρi

1− ρi

¶2 TX
t=1

be2it − 2ρi
(1− ρi)2

TX
t=1

sit(0)beit#

=
T 2σ2εi

6(1− ρi)2
+

σ2εi
(1− ρi)2

µ
−9T 2 − 5T + 3

6T

¶
+µ

ρi
1− ρi

¶2 σ2εi
(1− ρi)2

∙
T − 1− 2ρ+ ρT+1 + T (1− ρ)

T (1− ρ)2

¸
− 2ρi
(1− ρi)2

TX
t=1

sit(0)beit.
It is easy to show that

TX
t=1

sit(0)beit = TX
t=1

bεit TX
j=t

beij , (A.31)

beij = −ρi
1− ρi

(beij − beij−1) + 1

1− ρi
bεij,

where bεij = εij − T−1
PT

t=1 εit. Summing beij from j = t to T and using this in (A.31) gives

E

"
TX
t=1

sit(0)beit# = ρi
1− ρi

E

Ã
TX
t=1

bεitbeit−1!− ρi
1− ρi

E

ÃbeiT TX
t=1

bεit!+ ρi
1− ρi

E

Ã
TX
t=1

bεitsit(0)! .
(A.32)
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The last expectation term in (A.32) may be written as (εi1, εi2, ..., εiT )MP
0M (εi1, εi2, ..., εiT )

0, where M
and P are as defined above. The expectation of this term is therefore just

σ2εitr
¡
MP0M

¢
= σ2εitr

¡
MP0

¢
= σ2εi ×

T + 1

2
.

Although the first two terms in (A.32) can be readily calculated, anticipating more complex AR(p) processes
below, we obtain upper bounds for their absolute value instead. Applying Minkowski’s inequality to the first
term we see that its absolute value is bounded by an O(T ) function of T , σ2εi and ρi. Applying Hölder’s
inequality to the second term we see that its absolute value is bounded by an O(T ) function of T , σ2εi and
ρi. Hence the first term in (A.31) is T 2 times one-sixth of the long run variance of yit. The preceding
paragraph establishes that all other terms are bounded functions of T , σ2εi and ρi, and are at most O(T )

in T . Therefore, dividing (A.31) by σ2i T
2, where σ2i =

σ2εi
(1−ρi)2 is the long run variance of yit, rearranging

slightly and taking absolute values we have¯̄̄̄
E

µ
SiT
σ2i

¶
− 1
6

¯̄̄̄
=

¯̄̄̄
E

µ
SiT − Si∞

σ2i

¶¯̄̄̄
≤ QT (σ

2
i , ρi)

T
, (A.33)

where QT has an upper bound that is a function of σ
2
i and ρi and which is O(1) in T . Defining Q

∗
T =

maxσ2i∈Θσ,ρi∈Θρ QT (σ
2
i , ρi) we have ¯̄̄̄

E

µ
SiT − Si∞

σ2i

¶¯̄̄̄
≤ Q

∗
T

T
=
O(1)

T
, (A.34)

which proves the desired result. Finally, using (A.33) and (A.34) in (A.30) establishes that the rth moment
of SiT exists.

A.2.2 Proof of (A.25)

We first need to re-express BNT . Using σ
2
i =

σ2εi
(1−ρi)2

and σ̂2iT =
σ̂2εi

(1−ρ̂i)2
, then we obtain

σ̂2iT − σ2i
σ̂2iT

=

"
1−

(1− ρ̂i)
2 σ2εi

(1− ρi)
2
σ̂2εiT

#
.

Using a first order Taylor series expansion for (1− ρ̂i)
2
around ρi,

(1− ρ̂i)
2 = (1− ρi)

2 − 2 (1− ρ∗i ) (ρ̂i − ρi) ,

where ρ∗i lies between ρ̂i and ρi, we have¡
σ̂2iT − σ2i

¢
σ̂2iT

=
1

σ̂2εiT

∙¡
σ̂2εiT − σ2εi

¢
−
2(1− ρ∗i )σ

2
εi

(1− ρi)2
(ρ̂i − ρi)

¸
. (A.35)

Substituting (A.35) in the individual component of BNT , we have

SiT
σ2i

¡
σ̂2iT − σ2i

¢
σ̂2iT

=

µ
SiT
σ2i

1

σ̂2εiT

¶
×
∙¡
σ̂2εiT − σ2εi

¢
−
2(1− ρ∗i )σ

2
εi

(1− ρi)2
(ρ̂i − ρi)

¸
. (A.36)

Regarding the second moment and applying the Hölder’s inequality we have

E

"
SiT
σ2i

¡
σ̂2iT − σ2i

¢
σ̂2iT

#2
=

1

T
E

½µ
SiT
σ2i

1

σ̂2εiT

¶ ∙√
T
¡
σ̂2εiT − σ2εi

¢
−
2(1− ρ∗i )σ

2
εi

(1− ρi)2

√
T (ρ̂i − ρi)

¸¾

≤ 1

T

s
E

µ
SiT
σ2i

1

σ̂2εiT

¶4
E

∙√
T
¡
σ̂2εiT − σ2εi

¢
−
2(1− ρ∗i )σ

2
εi

(1− ρi)2

√
T (ρ̂i − ρi)

¸4
.
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The proof is then in five parts: (a) proof of the boundedness of the 8th moment of SiT
σ2i
; (b) proof of the

boundedness of the 8th moment of 1
σ̂2εiT

; (c) proof of the boundedness of the 4th moment of
√
T (σ̂2εiT −σ2εi);

(d) proof of the boundedness of the 4th moment of
√
T (ρ̂i−ρi);4 and (e) finally using (a)-(d) to prove (A.25)

for the current case.

(a) Proof that the eighth moment of SiT
σ2i
is bounded. The existence of the rth moment of

SiT
σ2i

for arbitrary r was established above.

(b) Proof that the eighth moment of 1
σ̂2εiT

is bounded. We prove the result for even T .

The corresponding proof for odd T requires only minor changes to what follows and is omitted for the sake
of brevity. Define the data vectors y0i = (yi1, ..., yiT ), y

0
i,−1 = (yi0, ..., yiT−1) and let ik denote a k× 1 vector

of units. It is a standard result of regression theory that

1

σ̂2εiT
= T (X0X)−111 , (A.37)

where (X0X)−111 is the (1, 1) element of the inverse of the data product matrix (X
0X)−1whereX = [yi,yi,−1, iT ].

Unfortunately, little may be said about the moments of
³
X

0
X
´−1

directly . Therefore our objective is to find

a “smaller” matrix than X0X (smaller in the sense that it X0X exceeds it by a positive semi-definite (psd)
matrix) whose inverse has clear stochastic properties. In what follows the notation A ¹ (º)B implies that
A exceeds B by a psd (nsd) matrix.

We may write X0X as

X0X = X0R(R0
R)
−1
R0X, (A.38)

where R is a T × T band matrix with −ρi on its super diagonal and units on its main diagonal. It follows
that

X0R =

⎡⎣ yi1 εi2 + αi εi3 + αi · · · εiT + αi
yi0 εi1 + αi εi2 + αi · · · εiT−1 + αi
1 1− ρi 1− ρi · · · 1− ρi

⎤⎦ = X∗0.
Writing R0R in its canonical form, (A.38) becomes

X0X = X∗0E0Λ−1EX∗ = X∗0E0
¡
Λ−1 − λ−1maxIT

¢
EX∗ + λ−1maxX

∗0X º λ−1maxX
∗0X∗,

where Λ is the diagonal matrix of ordered eigenvalues of R0R whose largest element is λmax and E is the
corresponding matrix of (orthonormal) eigenvectors. Let X∗e (X

∗
o) denote the 3 × T

2 matrix that contains
the even numbered (odd numbered) elements of X∗. It follows that

X0X º λ−1maxX
∗0X∗ = λ−1maxX

∗0
o X
∗
o + λ−1maxX

∗0
e X
∗
e º λ−1maxX

∗0
e X
∗
e. (A.39)

Inverting the leftmost and rightmost matrices in (A.39) gives

(X0X)−1 ¹ λmax(X
∗0
e X
∗
e)
−1. (A.40)

Referring back to the definition in (A.37) and using (A.40) therein gives

1

σ̂2εiT
= T (X0X)−111 ≤ Tλmax(X∗0e X∗e)

−1
11 , (A.41)

4The kth moment of (1− ρ∗i ) is always bounded, if the kth moment of
√
T (ρ̂i − ρi) is bounded, since

1− ρ∗i = (1− ρi) + (ρi − ρ∗i ).
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where the subscript 11 denotes the (1, 1)th element of the respective matrix and where the scalar inequality
in (A.41) follows from the fact that if matrix A exceeds matrix B by a psd matrix then the diagonal
elements of A (weakly) exceed those of B. The three columns of X∗e are (εi2 + αi, εi4 + αi, ..., εiT + αi)

0,
(εi1+αi, εi3+αi, ..., εiT−1+αi)

0 and (1−ρi, 1−ρi, ..., 1−ρi)0 so that (X∗0e X∗e)−111 is equivalent to the residual
sum of squares obtained by regressing (εi2, εi4, ..., εiT )

0 on (εi1, εi3, ..., εiT−1)
0 and constants. This quantity

may be equivalently written as

(X∗0e X
∗
e)
−1
11 = (X

0
eMXe)

−1
11 , (A.42)

whereXe is a
T
2×2 matrix containing (εi2, εi4, ..., εiT )0 and (εi1, εi3, ..., εiT−1)0, andM = IT

2
−iT

2

³
i0T
2

iT
2

´−1
i0T
2

is the idempotent matrix. Therefore, we have shown [e.g. Press (1972, p. 113)]

(X∗0e X
∗
e)
−1
11 = IW

µ
2,
T

2
− 1
¶
11

. (A.43)

Combining (A.40) - (A.43) gives

1

σ̂2εiT
≤ Tλmax(X0

cXc)
−1
11 = TλmaxIW

µ
2,
T

2
− 1
¶
11

. (A.44)

Now, it is easily verified that R0R is a band matrix with −ρi on its sub and super diagonals and the
elements

¡
1, 1 + ρ2i , 1 + ρ2i , ..., 1 + ρ2i

¢
on its main diagonal. We may rewrite its canonical form as

ER0RE0 = Λ. (A.45)

Expanding the (1, 1)th element of (A.45) gives an explicit form for λmax as

λmax =
¡
ER0RE0

¢
11
=
¡
1 + ρ2i

¢ TX
t=1

m2
1t − ρ2i

TX
t=1

m2
1t − 2ρi

TX
t=2

m1tm1t−1

= 1− 2ρi
TX
t=2

m1tm1t−1 ≤ 1 + 2ρi,

where m1t is the (1, t)th element of E and the equality and inequality in the second line of (A.46) follow by
virtue of the unit length of the eigenvectors and by application of Schwartz’s inequality respectively. (A.46)
and the strict positivity of λmax shows that its eighth power is a bounded function of ρi, T and σ2εi ∀T , and
∀ρi ∈ Θρ and σ2εi ∈ Θσ, where Θρ and Θσ are compact sets. By direct integration using the formula for the
pdf of a diagonal element of an IW

¡
2, T2 − 1

¢
matrix (e.g. Press (1972, p. 111)) it is easy to show that T 8

times the eighth moment of such an element is bounded and O(1) in T . These facts prove the desired result.

(c) Proof that the 4th moment of
√
T
¡
σ̂2εiT − σ2εi

¢
is bounded. Using standard regression

theory we have

σ̂2εiT − σ2εi =
1

T

¡
ε0iMiεi − Tσ2εi

¢
,

where ε0i = (εi1, εi2, ..., εiT ) and Mi = IT − Zi (Z0iZi)
−1
Z0i with Zi = (iT ,yi−1), iT = (1, 1, ..., 1)0 and

yi,−1 = (yi0, yi1, ..., yiT−1)
0. Using the fact that

ε0iMiεi =
TX
t=1

ε2it − ε0iPiεi ≥ 0,

where Pi = Zi (Z
0
iZi)

−1
Zi, it is easily seen that

σ̂2εiT − σ2εi ≤
1

T

Ã
TX
t=1

ε2it − Tσ2εi

!
=

σ2εi
T

Ã
TX
t=1

ε2it
σ2εi
− T

!
.
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Notice that
PT
t=1

ε2it
σ2εi

= χ2T , where χ
2
T stands for a χ

2 variate with T degrees of freedom. Since E
¡
χ2T
¢
= T ,

hence it is well known that E
¡
χ2T − T

¢4
= 12T (T + 1) [e.g. Poirier (1995, p. 101)]. Therefore,

E
h√
T
¡
σ̂2εiT − σ2εi

¢i4
≤ E

"
σ2εi√
T

Ã
TX
t=1

ε2it
σ2εi
− T

!#4
=

σ8εi
T 2

× 12T (T + 1) ,

and the last term here is clearly bounded.

(d) Proof that the fourth moment of
√
T (ρ̂i − ρi) is bounded. Because ρ̂i involves filtered

data using the estimator of the MA(1) parameter, θ̂i, we first prove a general result concerning the expected

value of positive functions of θ̂i. For the proof here we further assume that an estimator of θ has the following
properties: (i) θ̂i is a T -consistent estimator of θi; (ii) θ̂i is uniquely determined by {yi1, yi2, ..., yiT }; (iii)
θ̂i is constrained to take one of r discrete values defined in the set zr =

©
0, 1r ,

2
r , ...,

r−1
r , 1

ª
where r is a

finite integer greater than 1; (iv) under the alternative hypothesis (2.4), plim θ̂i 6= 1 for i = 1, ..., N1; (v) the
64th moment of T

³
1− θ̂i

´
exists. Note that any estimator of θ can be made to satisfy (iii) by a suitable

numerical rounding procedure or “discretisation” of the underlying (continuous) values. An example of an
estimator satisfying all of these assumptions is a discretised version of the estimator given in Snell (1999).

A discretised version of Choi’s (1992) GLS estimator of θ̂i would also satisfy (i) to (iv). The property (v)
may well be true for the latter, but a proof of this is beyond scope of the current paper.

Since we have assumed θ̂i to be identified, the sample space of raw data yi = (yi0, yi1, ..., yiT )
0, which

we denote by Y , can be divided into r + 1 subspaces Yj , j = 0, 1, ..., r, such that

θ̂i (yi) =
j

r
iff yi ∈ Yj , (A.46)

where θ̂i(yi) denotes the mapping from the data vector yi to θ̂i. Consider the weakly positive function

g
³
θ̂i(yi),yi

´
. We may write the expected value of g(·) as

E
h
g
³
θ̂i(yi),yi

´i
=

Z
Y

g
³
θ̂i(yi),yi

´
f(yi)dyi =

rX
j=0

Z
Yj

g

µ
j

r
,yi

¶
f(yi)dyi, (A.47)

where f(yi) is the multivariate normal probability distribution function and with a slight abuse of notation,R
Y
· · · dyi and

R
Yj
· · · dyi denote integration with respect to the T +1 variates yi0, yi1, ..., yiT over Y ∈ RT+1

and over Yj ∈ RT+1, respectively. The positivity of g(·) and normality of the variates mean that we can
expand further to get

rX
j=0

Z
Yj

g

µ
j

r
,yi

¶
f(yi)dyi ≤

rX
j=0

Z
Y

g

µ
j

r
,yi

¶
f(yi)dyi =

rX
j=0

E

∙
g

µ
j

r
,yi

¶
f(yi)

¸
.

(A.48)

(A.47) and (A.48) imply that the expected value of any (positive) expression g
³
θ̂i(yi),yi

´
will be bounded

if the expected values of g
¡
j
r ,yi

¢
are bounded for all j = 0, 1, ..., r.

Noting that under σv2i = 0,

∆ỹfit = ρi∆ỹ
f
it−1 +∆ε

f
it, (A.49)

we may write
√
T (ρ̂i − ρi) as

√
T (ρ̂i − ρi) =

Ã
1

T

TX
t=1

∆ỹf 2
it−1

!−1
1√
T

TX
t=1

∆ỹfit−1∆ε
f
it =

A

B
, say. (A.50)
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Applying Hölders inequality to the right most expression in (A.50) we require boundedness of the 8th
moments of A and 1

B , respectively. Consider A first. Using (A.49) and the identity,

∆xft ≡ xt −
³
1− θ̂i

´
xft−1, (A.51)

for any variable xt, we now have

√
T (ρ̂i − ρi) =

(
1

T

TX
t=1

h
ỹit−1 −

³
1− θ̂i

´
ỹfit−2

i2)−1

× 1√
T

TX
t=1

∙
ỹit−1εit −

³
1− θ̂i

´³
ỹfit−2εit + ỹit−1ε

f
it−1

´
+
³
1− θ̂i

´2
ỹfit−2ε

f
it−1

¸
=
A

B
,

(A.52)

where we have used the fact that
PT
t=1 ãtb̃t =

PT
t=1 ãtbt to express εit as a levels variate rather than a

deviation from mean variate. We may decompose A as

A =
1√
T

TX
t=1

ỹit−1εit − T
³
1− θ̂i

´ 1

T
3
2

TX
t=1

³
ỹfit−2εit + ỹit−1ε

f
it−1

´
+
h
T
³
1− θ̂i

´i2 1

T
5
2

TX
t=1

ỹfit−2ε
f
it−1.
(A.53)

Applying Minkowski’s and Hölder’s inequality to (A.53), we have

£
E
¡
A8
¢¤ 1

8 ≤

⎡⎣EÃ 1√
T

TX
t=1

ỹit−1εit

!8⎤⎦ 1
8

+

½
E
h
T
³
1− θ̂i

´i16¾ 1
16

⎧⎨⎩E
"
1

T
3
2

TX
t=1

³
ỹfit−2εit + ỹit−1ε

f
it−1

´#16⎫⎬⎭
1
16

+

⎧⎨⎩E
∙³
T
³
1− θ̂i

´´2¸16
E

Ã
1

T
5
2

TX
t=1

ỹfit−2ε
f
it−1

!16⎫⎬⎭
1
16

.

For boundedness of the 8th moment of A, we now require that the 8th moment of 1√
T

PT
t=1 ỹit−1εit, the 16th

moments of 1

T
3
2

PT
t=1

³
ỹfit−2εit + ỹit−1ε

f
it−1

´
and 1

T
5
2

PT
t=1 ỹ

f
it−2ε

f
it−1, and the 32nd moment of T

³
1− θ̂i

´
are

all bounded. The last of these holds by assumption. It follows that to establish the boundedness of other
expressions it is sufficient to show that the expectations of the other three terms for fixed θ̂i = 1 and for
fixed θ̂i ∈ [0, 1) are respectively bounded.

Consider first the case for θ̂i = 1. In this special case (A.49) reduces to

ỹit = ρiỹit−1 + εit,

and therefore, we require existence of 8th moment of 1√
T

PT
t=1 ỹit−1εit, and 16th moments of

1

T
3
2

PT
t=1 εit

Pt
j=1 ỹij−2,

1

T
3
2

PT
t=1 ỹit−1

Pt
j=1 εij−1, and

1

T
5
2

PT
t=1

³Pt
j=1 ỹij−2

´³Pt
j=1 εij−1

´
. Using Minkowski’s inequality on the

first of these terms we have⎡⎣EÃ TX
t=1

ỹit−1εit

!8⎤⎦ 1
8

=

⎡⎣EÃ TX
t=1

uit−1εit − yit−1
TX
t=1

εit

!8⎤⎦ 1
8

(A.54)

≤

⎡⎣EÃ TX
t=1

uit−1εit

!8⎤⎦ 1
8

+

⎡⎣EÃyit−1 TX
t=1

εit

!8⎤⎦ 1
8

.
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Applying Holder’s inequality to the second expectation term on the far right gives

E

Ã
yit−1

TX
t=1

εit

!8
≤

vuuutE ¡y16it−1¢E
⎡⎣Ã TX

t=1

εit

!16⎤⎦ = O(1),
where the last equality follows from the fact that yit−1 ∼ N

©
0, O(T−1)

ª
, and

PT
t=1 εit ∼ N {0, O(T )}.

Boundedness of 1√
T

∙
E
³PT

t=1 ỹit−1εit
´16¸ 1

16

therefore rests on boundedness of 1√
T

∙
E
³PT

t=1 uit−1εit
´8¸ 18

.

Expanding and applying Minkowski’s inequality we get5

⎡⎣EÃ TX
t=1

uit−1εit

!8⎤⎦ 1
8

=

⎡⎢⎣E
⎛⎝ ∞X
j=1

ρji

TX
t=1

εit−j−1εit

⎞⎠8
⎤⎥⎦

1
8

≤

⎛⎝ ∞X
j=1

ρji

⎞⎠⎡⎣EÃ TX
t=1

εit−j−1εit

!8⎤⎦ 1
8

≤

⎛⎝ ∞X
j=1

ρji

⎞⎠max
j

⎡⎣EÃ TX
t=1

εit−j−1εit

!8⎤⎦ 1
8

.

Adopt the shorthand
PT
t=1 at for

PT
t=1 εit−j−1εit for some arbitrary (fixed) j, and consider the expansion

of its eighth power. We divide the terms in the expansion into three types. The first type are O(T 4) in
number and take the form ak1i a

k2
j a

k3
k a

k4
l , where kj , j = 1, 2, 3, 4, are weakly positive integers summing to 8

with k1 = 5 and where i 6= j 6= k 6= l. By applying Hölders inequality to E
³
ak1i a

k2
j a

k3
k a

k4
l

´
we find that

these terms are each O(1) in magnitude. There are O(T 4) of such terms so that their total contribution

to E
³PT

t=1 εit−j−1εit
´8
is of order T 4. The second set of terms take the form of either a4i ajakalam or

a3i ajakalaman or a
2
jakalamanaoap or aiajakalamanaoap, and at first sight would appear to be in excess

of O(T 4) in number. However, each of these contains a term εit−j−1εit such that either εit−j−1 or εit
in this term appears nowhere else in the multiple. As a result their expected value factors into either
E(εit−j−1) × E(other term) or E(εit) × E(other term) and hence are all equal to zero. The third type of
terms have the form a3i a

2
jakalam or a2i a

2
jakalaman, which again appear to be more numerous than O(T

4).
However, using the previous argument plus the fact that third moment of normal variates is zero, we find
that only the second of this type has non-zero expectation. A necessary condition for E

¡
a2i a

2
jakalaman

¢
to be non-zero is that either i = min (i, j, k, l,m, n) and j = max (i, j, k, l,m, n) or i = max (i, j, k, l,m, n)
and j = min (i, j, k, l,m, n). These conditions restrict the number of non-zero expectation terms of this
type to at most O(T 4).6 As with the first type of terms E

¡
a2i a

2
jakalaman

¢
is O(1). This proves that

E
³PT

t=1 εit−j−1εit
´8
is of O(T 4) regardless of j so that E

³
1√
T

PT
t=1 εit−j−1εit

´8
is bounded.

We now deal with 1

T
3
2

PT
t=1 εit

Pt
j=1 ỹij−2. We may write

1

T
3
2

TX
t=1

εit

tX
j=1

ỹij−2 =
1

T
3
2

TX
t=1

εit

tX
j=1

ỹij −
1

T
3
2

TX
t=1

εitỹit−1 −
1

T
3
2

TX
t=1

εitỹit. (A.55)

Applying Minkowski’s inequality (e.g. in the manner of (A.54)) and noting that the second term on the
right of (A.55) has just been shown to be bounded, it is sufficient to show that the first and third terms

5Note that
P∞
j=1 ρ

j
i is the sum of the MA coefficients in the Wold form for yit and so is bounded. It is

also bounded for any stationary process so the details of this section of the proof would not change for the
AR(p) case below.

6In fact there are far fewer than O(T 4) terms because there is a further necessary condition for the
expectation being non-zero. The necessary condition given in the text is suffucient for our purposes.
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on the right of (A.55) have bounded 16th moments. A straightforward and by now familiar application of
Minkowski’s inequality shows that this holds true for the second term on the right. The first term may be
written as

1

T
3
2

TX
t=1

εit

tX
j=1

ỹij =
1

T
3
2

(εi1, . . . , εiT )Ω
1
2PM (εi1, . . . , εiT )

0
,

where Ω
1
2 , P andM are as defined earlier. Reapplying the argument in (A.28) to (A.30), the 16th moment

of the above is bounded if
PT
t=1 λt = σ2εitr

³
Ω

1
2PM

´
= E

³PT
t=1 εit

Pt
j=1 ỹij

´
is O(T

3
2 ) or less. Using the

fact that the columns and rows of the covariance matrix of a stationary variable are summable it is easy to

show that tr
³
Ω

1
2PM

´
= O(T ), and hence that the 16th moment of T−

3
2
PT
t=1 εit

Pt
j=1 ỹij is bounded.

A nearly identical argument applies to T−
3
2

PT
t=1 ỹit−1

Pt
j=1 εij−1.

Finally, to establish the boundedness of the 16th moment of T−
5
2
PT
t=1

³Pt
j=1 ỹij−2

´³Pt
j=1 εij−1

´
we

may use the same arguments for the third term in (A.55) with minor modifications. Write it as a quadratic
form in (εi1, . . . , εiT ) plus other terms to which Minkowski’s inequality may be applied to show boundedness

and then analyse the trace of the matrix in the quadratic form. The latter is tr
³
Ω

1
2MPP0

´
and by tedious

expansion (and again using the summability of stationary autocovariances) is easily shown to be O(T 2).

Hence the 16th moment of T−
5
2
PT
t=1

³Pt
j=1 ỹij−2

´³Pt
j=1 εij−1

´
is bounded.

Next, consider the case for 0 ≤ θ̂i < 1. By successive application of Minkowski’s and Hölder’s inequality
to 1

T

PT
t=1 ỹ

f
it−2εit, we may write⎡⎣EÃ 1

T
3
2

TX
t=1

ỹfit−2εit

!16⎤⎦ 1
16

=
1

T
3
2

⎡⎣EÃ TX
t=1

ỹfit−2εit

!16⎤⎦ 1
16

≤ 1

T
3
2

TX
t=1

∙
E
³
ỹfit−2εit

´16¸ 1
16

≤ 1

T
3
2

TX
t=1

∙
E
³
ỹfit−2

´32¸ 1
16

×
£
E(εit)

32
¤ 1
16 =

O (1)√
T
, (A.56)

where the last equality follows from the fact that ỹfit−2 and εit are zero-mean normal variates with variances

that are finite functions of T , ρi and σ2εi and that are O(1) in T . (A.56) shows that T
− 3
2
PT
t=1 ỹ

f
it−2εit

has sixteenth moment that is bounded for 0 ≤ θ̂i < 1. Exactly the same arguments may be applied to

show boundedness of

∙
E
³

1

T
3
2

PT
t=1 ỹit−1ε

f
it−1

´16¸ 1
16

and

∙
E
³

1

T
5
2

PT
t=1 ỹ

f
it−2ε

f
it−1

´16¸ 1
16

, and for reasons of

brevity we do not repeat them here.
Turning now to the 8th moment of 1

B in (A.52), we may write

1

B
= T

(
TX
t=1

h
ỹit−1 −

³
1− θ̂i

´
ỹfit−2

i2)−1
. (A.57)

Consider the case for θ̂i = 1 first. In this case
1
B simply reduces to

T

Ã
TX
t=1

ỹ2it−1

!−1
= T (X0X)

−1
11 , (A.58)

where X is now the T × 2 matrix whose columns are (y1, ..., yT )0 and (1, 1, ..., 1)0. The template of the proof
given in part (b) above may be adapted with only minor and obvious amendments to show that the 8th
moment of the expression in (A.58) is O(1) in T .
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Next, for the case of 0 ≤ θ̂i < 1 we may apply a similar argument to that given above for T
³PT

t=1 ỹ
2
it−1

´−1
to show that the term in braces on the right of (A.57) is bounded by an IW

¡
1, T−12

¢
variate. Following the

development in (A.38) we may write"
TX
t=1

³
ỹit−1 − (1− θ̂i)ỹ

f
it−2

´2#−1
=
h
X0R(R

0
R)−1R

0
X
i−1
11

where nowR = A(θi)B(ρi),A(θi) andB(ρi) have unity on their main diagonals and−θi and−ρi respectively
on their superdiagonals and other notations are the same as above. Under the current definition of R,

X0R =
n
ỹiT−1 − (1− θ̂i)ỹ

f
iT−2,∆εiT−1,∆εiT−1, ...,∆εi0

o
.

Following previous arguments, h
X0R(R

0
R)
−1
R

0
X
i−1
11
¹ λmax

³
X0RR

0
X
´−1
11

where λmax is the largest eigenvalue of R
0
R. Below in the proof of the AR(p) case we show that the largest

eigenvalue of the covariance matrix of a T × 1 vector of observations on a stationary variate is bounded.
It is readily established that R0R is such a covariance matrix so this bounding argument applies here
also. Denoting Xe as the 2× T

2 matrix containing the even numbered elements of X
0R and using previous

arguments gives

λmax

³
X0RR

0
X
´−1
11
¹ λmax (XeXe)

−1
11 .

The variate on the right is an IW
¡
1, T−12

¢
. T k times the kth moment of such a variate is a bounded constant

and is O(1) in T , so that the 8th moment of 1
B is bounded. Hence we have shown that the 8th moment of

1
B is bounded for 0 ≤ θ̂i ≤ 1. This completes the proof that the 4th moment of

√
T (ρ̂i − ρi) is bounded.

(e) Proof of (A.5) for the AR(1) case. To prove (A.5) for the AR(1) case we follow exactly
the same procedure as for the simple case and establish a fixed upper bound for the second moment of diT .
As before, write diT as

diT =
(Si∞ − SiT )

σ2i
+

1√
T

µ
SiT
σ2i

¶"√
T
¡
σ̂2iT − σ2i

¢
σ̂2iT

#
, (A.59)

and show that its second moment is bounded and is O(T−1) in T . As before we deal with the first and
second terms in (A.59), separately. We have shown above that the mean and variance of Si∞−SiT

σ2i
are

bounded functions of T, σ2εi and ρi and are O(T
−1) and o(1) in T respectively. Denoting

√
T times the mean

of this term by MT

¡
σ2εi , ρi

¢
and the variance of this term by VT

¡
σ2εi , ρi

¢
we may write

M∗T = max
σ2εi
∈Θσ,ρi∈Θρ

MT

¡
σ2εi , ρi

¢
= O

³
T−

1
2

´
; V ∗T = max

σ2εi∈Θσ,ρi∈Θρ
VT
¡
σ2εi , ρi

¢
= o(1).

(A.60)

Recalling the definition of DNT given by (A.4) and using the independence of panels, then

V ar(ANT ) =
1

N

NX
i=1

V ar

µ
Si∞ − SiT

σ2i

¶
≤ 1

N

NX
i=1

V ∗T = V
∗
T = o(1), (A.61)

E(ANT ) =
1√
N

NX
i=1

E

µ
Si∞ − SiT

σ2i

¶
≤ 1√

N

NX
i=1

M∗T√
T
=

r
N

T
M∗T =

r
N

T
×O(T− 1

2 ),
(A.62)

[A.13]



where the last equalities follow from (A.60). This shows that

lim
N,T→∞,NT →0

E(ANT ) = 0 and lim
N,T→∞,NT →0

V ar(ANT ) = 0, (A.63)

which establishes via Chebyshev’s inequality that

plimN,T→∞,NT →0ANT = 0. (A.64)

We now show that the same result holds for BNT also. As (A.4) shows, BNT is the normalised sum of
the terms

SiT
σ2i

¡
σ̂2iT − σ2i

¢
σ̂2iT

=
1√
T

µ
SiT
σ2i

¶µ
1

σ̂2iT

¶h√
T
¡
σ̂2iT − σ2i

¢i
=

1√
T
EiTFiTGiT , say. (A.65)

Using the results obtained in subsections (a) and (d) above and Hölder’s inequality on EiTFiTGiT establishes

the boundedness of the second moment of SiT
σ2i

(σ̂2iT−σ2i )
σ̂2iT

. Each upper bound in (a) - (d) above was established

for any admissible T,σ2εi and ρi (i.e. for T > TL and for any σ2εi ∈ Θσ and ρi ∈ Θρ). Furthermore, it is
readily established by inspection that the second moment of EiTFiTGiT is solely a function of T , σ

2
εi and ρi.

Proceeding as before then we have

E (EiTFiTGiT )
2 = CT (σ

2
εi , ρi) ≤ C

∗
T <∞, (A.66)

where

C∗T = max
σ2εi
∈Θσ,ρi∈Θρ

CT (σ
2
εi , ρi) for T > TL. (A.67)

From Jensen’s inequality it follows that

E (EiTFiTGiT ) ≤
p
C∗T <∞. (A.68)

Using (A.66) - (A.68), the mean and variance of BNT satisfy

E(BNT ) =
1√
N

NX
i=1

1√
T
E (EiTFiTGiT ) ≤

r
N

T

p
C∗T , (A.69)

V ar(BNT ) =
1

N

NX
i=1

1

T
V ar (EiTFiTGiT ) ≤

1

N

NX
i=1

1

T
E (EiTFiTGiT )

2 ≤ C
∗
T

T
. (A.70)

These results demonstrate that

lim
N,T→∞,NT →0

E(BNT ) = 0; lim
N,T→∞,NT →0

V ar(BNT ) = 0, (A.71)

which in turn via Chebyshev’s inequality imply that

plimN,T→∞,NT →0
BNT = 0. (A.72)

From the definition of DNT given in (A.4), (A.64) and (A.72) establish (A.5) for the AR(1) case.

A.2.3 Extension to the AR(p) case

The proof is readily extended to the general AR(p) case, following near identical arguments to those used
above. To avoid repetition, we only provide arguments and equations where they differ from the previous
case.
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For proof of (A.18): As before, boundedness of higher moments of SiT rests on boundedness of its
mean. The mean could be computed directly as before by extending (A.30) to (A.32). However, this becomes

long winded for the AR(p) case. Instead we note that E(SiT ) = tr

µ
Ω

1
2MPP

0
MΩ

1
2

¶
= tr

³
ΩMPP

0
M
´
].

Tedious and uninformative expansion (available on request) shows that this trace is the sum of O(T 2), O(T )
and O(1) terms. It follows that E(SiT ) is bounded and hence so are higher moments. The remaining results
follow without change.

For proof of (A.25): Since the long run variance in the AR(p) case is now σ2i =
σ2εi

ρi(1)2
, hence the

analogue of (A.35) for the current case is¡
σ̂2iT − σ2i

¢
σ̂2iT

=
1

σ̂2εiT

⎧⎨⎩¡σ̂2εiT − σ2εi
¢
− 2

pX
j=1

(1− ρ∗ij)σ
2
εi

(1− ρij)2
(ρ̂ij − ρij)

⎫⎬⎭ , (A.73)

where ρ∗ij lies between ρ̂ij and ρij . The remaining arguments carry over here.

For subsection (a): The existence of the rth moment of SiT
σ2i

for arbitrary r was established above.

For subsection (b): We now have

1

σ̂2εiT
= T (X0X)−111 , (A.74)

where X = (yi,yi,−1, ...,yi,−p, iT ) is a T × (p+ 2) data matrix. The transformation matrix R now has
units on the main diagonal and −ρij on the jth superdiagonal. Then the arguments proceed as before up
to (A.38). At that point we selected the even numbered elements of the data in X∗ whereas here we select
the (p+ 1)th numbered elements. For example, when p = 10, we would select the 11th, 22nd, 33rd, ..., rows
of X∗ and place them in the (p+ 1)× T

p+1 data matrix again denoted by X
∗
e. The remaining arguments go

through up to (A.42) and (A.43) except that the limiting random variable is now IW
³
p+ 1, T−1p+1

´
rather

than IW
¡
2, T−12

¢
. Finally, the maximum eigenvalue expression (A.46) becomes

λmax =
TX
j=1

m2
1jrjj + 2

TX
k=1

TX
j=i

m1km1jrkj = m
2
11 (r11 − rD) + rD + 2

TX
k=1

TX
j=i

m1km1jrkj

≤ m2
11 (r11 − rD) + rD + 2

vuuut⎛⎝ TX
i=1

TX
j=i

m1im1jrij

⎞⎠2

≤ m2
11 (r11 − rD) + rD + 2rmax <∞,

where m1j is the (1, j)th element of the matrix of the corresponding orthonormal eigenvectors, E, rkj
denotes the (k, j)th element of R0R, rmax is the largest (in absolute value) off-diagonal element of R, and
rD denotes the identical elements rkk (k > 1). In deriving the above equalities and inequalities, we have
used (i) unit length of the eigenvectors, (ii) positivity of the eigenvalue, (iii) Schwartz’s inequality and (iv)
the 2-summability of the vector of AR coefficients (ρi1, ..., ρip), respectively.

For subsection (c): The arguments carry over directly to the current case except that Zi is now the
T × (p+ 1) matrix (yi−1, ...,yi−p, iT ).

For subsection (d): Now ρi is the p× 1 vector ρi = (ρi1, ρi2, ..., ρip)0 so that

√
T (ρ̂i − ρi) =

⎡⎣Ã∆Zf 0i ∆Zfi
T

!−1
∆Zf

0

i ∆ε
f
i√

T

⎤⎦
p

=
¡
B−1A

¢
p
, say, (A.75)
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where the subscript p denotes the first p elements of the respective matrix and Zi = [ỹi,−1, ỹi,−2, ..., ỹi,−p]
is the T × (p+ 1) data matrix containing T observations on the p lagged demeaned series. We show that all
(p+ 1) elements of B−1A have the necessary bounded moments.

As before we may apply Hölder’s and Minkowski’s inequality to establish that the boundedness of the
eighth moment of each element of B−1A rests on the boundedness of the sixteenth moments of each element
of B−1 and A, respectively. We start with B−1 and again we show the required boundedness results for
θ̂i = 1 and for 0 ≤ θ̂i < 1 separately.

For θ̂i = 1, B
−1 becomes T (Z0iZi)

−1
and the analysis in section (b) may be directly reapplied here with

the following minor changes: (i) X now becomes (Zi, iT ), (ii) R is re-defined for the AR(p) case as given
above, every (p+ 1)th observation is collated in X∗e rather than every 2nd, and (iii) the subscript ‘11’ after
a matrix now denotes the upper (p + 1) × (p + 1) elements rather than the (1, 1)th element. With these
amendments, the analysis in (b) may be reapplied to get a bounding matrix for T (Z0iZi)

−1
in the manner of

(A.43). This bounding matrix is now Tλmax times an IW
³
p+ 1, T−1p+1

´
variate. The eighth moments of all

elements of T times the IW matrix are bounded and λmax, the largest eigenvalue of R
0R has been shown

above to be bounded so that the 8th moments of each element in the matrix T (Z0iZi)
−1
is also bounded.

Only minor amendments need be made to apply the preceding arguments to the case of 0 ≤ bθ < 1.
The transformation matrix R is now the product of two T × T matrices, i.e. R = R1R2 where R1 has
ones on its diagonal and −bθi on its superdiagonal and R2 has ones on its main diagonal and −ρj on its jth
superdiagonal. (Apart from the initial terms which are subsequently dropped, the first matrix transforms

∆Zfi to ∆Zi and the second transforms ∆Zi to the first differenced white noise data ∆εi). The limiting IW

variate becomes IW
³
p+ 1, T−1p+1

´
. The only remaining difficulty is showing that λmax (the largest eigenvalue

of R0
2R

0
1R1R2) is bounded for this case. To show this, consider the p×1 random vector v = R0

2R
0
1ω, where

E(ω) = 0 and E(ωω0) = IT . Clearly, v is a stationary process with covariance matrix R
0
2R

0
1R1R2 and

bounded off-diagonal elements. We may therefore re-apply the argument at the end of subsection (b) to the
current case.

On expansion of the matrix A, it can be seen that each of its elements has the same form as the term in
(A.53). Proof of boundedness of each of these elements therefore proceeds along identical lines as the AR(1)
case. The only added complication is the more general form of the covariance matrix of the yit. However, the
only characteristic of this matrix used in the previous proofs was the summability of its columns and rows.
This property holds for the rows and columns of the covariance matrix of T observations on any stationary
variate.

For subsection (e): The arguments in subsection (e) carry over directly to the current case.
Finally, the consistency of the test can be proved along similar lines to the proof of Theorem 3.2.
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